

Wind · Wasser · Umwelt

LANDESHAUPTSTADT DÜSSELDORF: ERMITTLUNG DER FEINSTAUBBELASTUNG IM DÜSSELDORFER HAUPTHAFEN

Auftraggeber: Landeshauptstadt Düsseldorf

Umweltamt

Brinkmannstraße 7

40200 Düsseldorf

Durchführung: Ingenieurbüro Rau (Federführung)

Bottwarbahnstraße 4 74081 Heilbronn Tel: 07131/3907090

Ingenieurbuero.rau@online.de

AVISO GmbH

Adalbertsteinweg 34

52070 Aachen

Tel: 0241/4704585

Inhaltsverzeichnis

1 EINLEITUNG UND AUFGABENSTELLUNG	1
2 METHODIK UND VORGEHENSWEISE	6
3 EMISSIONEN	8
3.1 Quellgruppe Industrie	8
3.1.1 Betriebe mit Emissionserklärungspflicht	8
3.1.2 Staubrelevante Betriebe ohne Emissionserklärungen	13
3.2 Quellgruppe Straßenverkehr	16
3.2.1 Straßenverkehr und Emissionen 2008	16
3.2.2 Straßenverkehr und Emissionen 2015	22
3.3 Quellgruppe Schiene	28
3.4 Quellgruppe Schiff	30
3.5 Quellgruppe Hausbrand und Kleinfeuerung	32
3.6 Abschätzung der PM2,5-Emissionen	34
3.7 Zusammenfassung	36
4 BESTIMMUNG DER IMMISSIONSVERHÄLTNISSE	38
4.1 Vorgehensweise bei der großräumigen Immissionsberechnur	ng 38
4.1.1 Das Strömungs- und Ausbreitungsmodell Lasat	38
4.1.2 Festlegung der Emissionen	38
4.1.3 Festlegung der Randbedingungen	39
4.1.4 Meteorologische Daten	39
4.1.5 Bebauung und Gelände	40
4.2 Mikroskalige Immissionsberechnungen für den Düsseldorfer	Hafen 41
4.2.1 Das Strömungs- und Ausbreitungsmodell MISKAM	41
4.2.2 Modellvorgaben	41
4.2.3 Umfang der Berechnungen	42
4.2.4 Windstatistik	42

4.3	Bestimmung der Gesamtbelastung	44
5	ERGEBNISSE DER IMMISSIONSBERECHNUNG	45
5.1	Beurteilungsmaßstäbe	45
5.2	Ergebnisse der Immissionsberechnungen für den städtischen Hintergrund	45
5.3	PM10-Immissionsgesamtbelastung im Düsseldorfer Hafen	53
5.4	Abschätzung der PM2,5-Immissionen	59
6	ZUSAMMENFASSUNG	61
7	LITERATURVERZEICHNIS	64
ANI	HANG A	67
ANI	HANG B	76

1 Einleitung und Aufgabenstellung

Der Düsseldorfer Haupthafen als Teil des Neuss-Düsseldorfer Wirtschaftshafens ist seit seiner Gründung ein wichtiger Bestandteil der regionalen Wirtschaftsstruktur. Um den Standort auch langfristig zu sichern, wurde Mitte der 70er Jahre beschlossen, den damaligen Industrie- und Handelshafen einer Umstrukturierung bzw. Weiterentwicklung zu unterwerfen und Teile des Hafengebietes für die Ansiedlung von nicht-hafengebundenen Betrieben aus dem tertiären Sektor zu nutzen. Im Rahmen dieser Entwicklung entstand u. a. der heute als "Medienhafen" bekannte Teil im südlichen Hafengebiet. Um die sich daraus ergebenden positiven nutzungsstrukturellen Entwicklungen zielgerichtet weiterführen zu können, wurden 2003 Aufstellungsbeschlüsse für vier Bebauungspläne (Speditionstraße West, Kesselstraße, Weizenmühlenstraße und Hamburger Straße/Lausward) gefasst, die die strukturelle Nutzung und Entwicklung der einzelnen Teilgebiete des Hafens vorgeben.

Gemäß Sachstand Frühjahr 2009 wird im Folgenden die damalige Planung im Entwurfsstadium vorgestellt. Sie stellt die Grundlage der Szenarien I, III und IV dar.

Anmerkung zum Sachstand: Planung zum Zeitpunkt des Abschlusses des vorliegenden Gutachtens (Juli 2010):

Im Jahr 2008 reichte die Stadt Düsseldorf die für die oben genannten vier Bebauungspläne notwendige Flächennutzungsplanänderung bei der zuständigen Bezirksregierung ein. Auf die Ablehnung reichte die Stadt Düsseldorf Klage beim Verwaltungsgericht ein. Im Ergebnis wurde im April 2010 dann ein Vergleich zwischen Stadt und Bezirksregierung geschlossen. Demnach betreffen die Flächennutzungsplanänderung sowie die hierauf aufbauenden Bebauungspläne nur noch die Plangebiete Speditionstraße West und Lausward/Hamburger Straße; von der Flächennutzungsplanänderung der Plangebiete Kessel- und Weizenmühlenstraße nahm man Abstand.

Da bereits im Istzustand (Szenarium II, Abb. 5.7) die Immissionsgrenzwerte im Bereich der Speditionstraße klar eingehalten werden und emissionsseitig die Belastungen bei den Szenarien I, III und IV geringer ausfallen, ist davon auszugehen, dass auch unter Berücksichtigung der nunmehr aktuellen Planung die Grenzwerte in der Speditionstraße in den Szenarien I, III und IV eingehalten werden.

Das Bebauungsplangebiet Lausward/Hamburger Straße umfasst den gesamten nordwestlichen und größten Teil des Hafens. Im Kernbereich des Plangebietes befinden sich diverse Industrie- und Gewerbebetriebe, die überwiegend auf die Umschlaganlagen des Hafens für den Bahn- und Schiffsverkehr angewiesen sind. Im Nord-Westen liegt das Kraftwerk Lausward zusammen mit einem angeschlossenen, offenen Tiefbunker und einem Kohlefreilager. Vorrangiges Ziel für dieses Plangebiet ist die nachhaltige planungsrechtliche Sicherung des Umschlaghafens und des Kraftwerks Lausward.

Das Gebiet des Bebauungsplans Weizenmühlenstraße ist bis vor ca. 10 Jahren noch fast ausschließlich durch hafentypische Betriebe genutzt worden. Derzeit befinden sich noch drei

große Mühlenbetriebe der Futter- und Nahrungsmittelindustrie, sowie kleinere, meist mittelständische Gewerbegebiete, die nicht hafengebunden sind, im Plangebiet. Das Plangebiet an der Weizenmühlenstraße und an der Spitze der Bremer Straße soll eine Pufferzone zwischen dem gewerblich-industriell geprägten Wirtschaftshafen im Nord-Westen und der geplanten Weiterentwicklung des Medienhafens im Bereich der Kesselstraße und Speditionstraße bilden. Den Mühlenbetrieben wird dementsprechend noch (teilweise) bis zum Jahr 2032 ein erweiterter Bestandschutz gewährt. Danach wird das Plangebiet sukzessive vollständig als gegliedertes Gewerbegebiet gekennzeichnet.

Die Ziele der Bebauungspläne (-Entwürfe) für die Gebiete Speditionstraße West und Kesselstraße sind eine Fortführung und Ergänzung der Strukturen des Medienhafens. Das Plangebiet soll dabei vornehmlich als Standort für Unternehmen aus den Branchen Medien, Design, Werbung, Telekommunikation, Kunst, Gastronomie und Freizeit fungieren und durch Wohngebiete in Mischgebietsstrukturen ergänzt werden, wenn dies immissionsschutz-rechtlich verträglich ist /Stadt Düsseldorf 2008d, e/.

Aus diesen Planzielen geht hervor, dass es vor allem am Grenzbereich zwischen Industrieund Medienhafen zu Nutzungskonflikten kommen kann, so zum Beispiel wenn die geplanten Mischstrukturen und speziell die Wohngebiete unter einer erhöhten Immissionsbelastung, verursacht durch die Industrieanlagen, zu leiden hätten.

Für die PM10-Immissionskonzentrationen im Bereich des Untersuchungsraumes sind vor allem der Kfz-Verkehr, Emissionen aus Gewerbe/Industrie sowie Emissionen durch Schiffsund Bahnverkehr und aus Kleinfeuerungsanlagen (Hausbrand) verantwortlich. Zur Abschätzung dieser Risiken wurde das Ingenieurbüro Rau von der Stadt Düsseldorf beauftragt, die Feinstaubimmissionsbelastung (PM10) mittels mikroskaliger Ausbreitungsmodellierung für das Düsseldorfer Hafengebiet zu berechnen und Aussagen über die Belastung zu treffen.

Für eine bessere Beurteilung der Vorbelastung im Bereich des Düsseldorfer Hafens (städtischer Hintergrund) werden die PM10-Immissionsbelastungen, die durch die Emissionen der umliegenden Bereiche verursacht werden, separat ermittelt. Dabei wurde ein Umkreis bis zu zwei Kilometer Entfernung inklusive dem Neusser Hafen berücksichtigt. Die mikroskaligen Ausbreitungsrechnungen für das Düsseldorfer Hafengebiet liefern die PM10-Zusatzbelastung, die dann mit der ebenfalls für das Hafengebiet berechneten städtischen Hintergrundbelastung und der regionalen Hintergrundbelastung zur Gesamtbelastung überlagert wird. Einen Überblick über das untersuchte Gebiet geben die Bilder 1.1 und 1.2. Die "lückenhafte" Darstellung der Luftbilder ist darauf zurückzuführen, dass die vom Umweltamt der Stadt Düsseldorf zur Verfügung gestellten Luftbilder nur das Düsseldorfer Stadtgebiet abdecken und auch teilweise dem differenzierten Grenzverlauf angepasst sind. Für den Neusser Hafen wurden, aufgrund seiner Relevanz zur Schadstoffbelastung im benachbarten Düsseldorfer Hafen, vom Umweltamt Düsseldorf zusätzliche Luftbilder gekauft und für das Gutachten zur Verfügung gestellt. Diese decken jedoch nur das unmittelbare Hafengebiet ab, wodurch zwischen beiden Datenquellen bzw. Häfen Gebiete ohne Luftbildabdeckung entstehen.

Die Projektbearbeitung erfolgte in Arbeitsgemeinschaft mit der AVISO GmbH Aachen. Die AVISO GmbH hat den Part der Emissionsbestimmung durchgeführt.

Der Bericht ist folgendermaßen gegliedert:

In Kapitel 2 wird die Methodik und Vorgehensweise detailliert vorgestellt. In Kapitel 3 wird ausführlich die Emissionsbestimmung dargestellt. In Kapitel 4 wird die Vorgehensweise bei der Berechnung der Immissionsbelastungen, sowohl mikroskalig im Bereich des Düsseldorfer Hafens als auch mesoskalig für das Umfeld, erläutert. In Kapitel 5 werden die Ergebnisse der Immissionsberechnungen vorgestellt und diskutiert. Kapitel 6 enthält die Zusammenfassung.

INGENIEURBÜRO RAU

AVISO GMBH

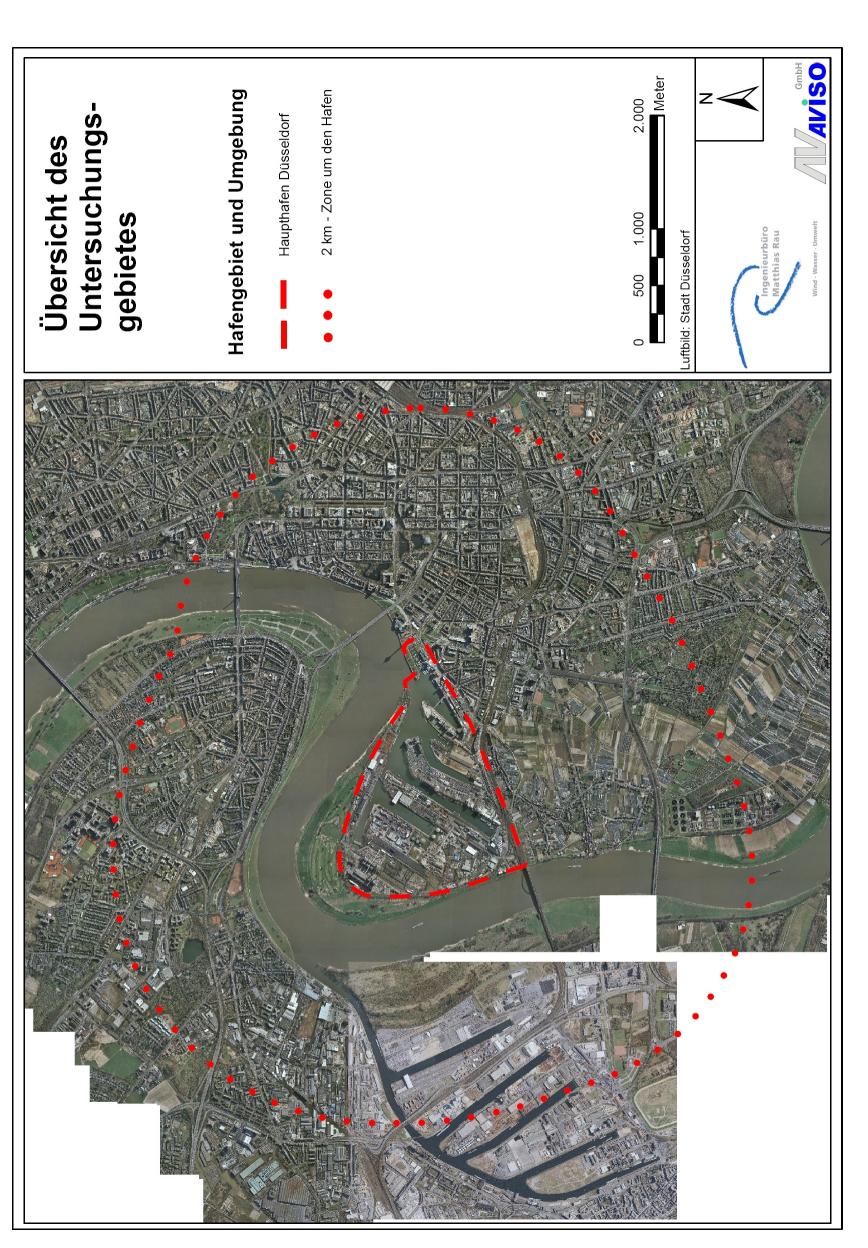


Bild 1.1: Untersuchungsgebiet und 2 km Umkreis

AVISO GMBH

Bild 1.2: Straßennetz im Düsseldorfer Haupthafen

2 Methodik und Vorgehensweise

Die PM10-Immissionsbelastungen im Düsseldorfer Haupthafen werden zum einen durch die im Hafengebiet selbst ansässigen Betriebe (Quelle Gewerbe/Industrie), zum anderen durch die Emissionen des Verkehrs im Hafen (Kfz-Verkehr, Bahnverkehr und Schiffsverkehr) verursacht. Bei den Quellen, die unterhalb des mittleren Dachniveaus emittieren (Quellen Verkehr und die nicht über Kamine abgeleitete Abluft von Gewerbe/Industriebetrieben), wird die Ausbreitung stark durch die dort bestehende Bebauung geprägt. Um für Teilbereiche innerhalb des Hafens zuverlässige Aussagen zu der PM10-Immissionskonzentration treffen zu können, sind Berechnungen mit einem mikroskaligen Modell wie bspw. MISKAM notwendig, mit dem die Gebäudeum- und Überströmung sowie die Strömungen innerhalb von Straßenräumen realistisch abgebildet werden können.

Neben den Quellen im Hafen selbst bestimmen die Quellen der direkt anschließenden Gebiete (insbesondere der westlich gelegene Hafen Neuss) das Immissionsniveau im Düsseldorfer Hafen. Diese Quellen wirken als sogenannte Vorbelastung auf das Hafengebiet ein. Um diesen Anteil, der nicht unerheblich ist, realistisch abschätzen zu können, ist es notwendig, die Quellen in der Umgebung des Hafens, die einen maßgeblichen Einfluss auf die Vorbelastung im Hafen haben können, möglichst gut zu erfassen. Mit einer großflächigen Berechnung wird darauf aufbauend die Immissionsbelastung durch die umliegenden Quellen im Hafen ermittelt, wobei die Gebäude nicht explizit aufgelöst, sondern als Rauigkeit erfasst werden. Geeignet hierfür ist das Modell LASAT. Nach unserer Erfahrung ist es ausreichend, für die Bestimmung der Vorbelastung im Haupthafen die Quellen bis in eine Entfernung von etwa 2-3 km vom Hafen zu betrachten. Für die Vorbelastungsbestimmung werden die Quellen Gewerbe/Industrie, Verkehr (Bahn, Schiff, Kfz) und Hausbrand berücksichtigt.

Auf Grund der Datenlage einerseits und aus modelltechnischen Gründen andererseits kann eine klare Trennung zwischen sämtlichen Emissionsquellen innerhalb des Düsseldorfer Hafens sowie den Emissionsquellen im Umfeld nicht konsequent durchgeführt werden. So liegen die Emissionen für Hausbrand/Kleinfeuerung sowie die Abgasdaten der Bahn lediglich aus dem Emissionskataster als Rasterdaten vor. Sie werden, auch für das Düsseldorfer Hafengebiet, im Rahmen der großräumigen Immissionsberechnungen berücksichtigt.

Die Berechnung der detaillierten Zusatzbelastung innerhalb des Düsseldorfer Hafengebietes mit dem mikroskaligen Modell MISKAM erfolgt somit für die Emissionsquellen aus den Quellgruppen Verkehr, Schiff und Industrie/Gewerbe, die innerhalb des Hafengebietes liegen. Die Berechnung der Vorbelastung im Bereich des Düsseldorfer Hafens durch die umliegenden Quellen mit dem mesoskaligen Modell LASAT erfolgt für die Emissionsquellen aus den Quellgruppen Verkehr, Schiff und Gewerbe/Industrie außerhalb des Hafengebietes sowie die Quellgruppen Hausbrand/Kleinfeuerung und Schiene außerhalb und innerhalb des Düsseldorfer Hafengebietes.

Die Berechnungen sollen für insgesamt 4 Szenarien innerhalb des Düsseldorfer Hafengebietes durchgeführt werden, die sich zum Teil bzgl. der Bebauungsstrukturen und der Emissionen unterscheiden. Die Szenarien wurden mit dem Umweltamt Düsseldorf abgestimmt.

Das Szenarium II stellt den so genannten Istzustand (Ausgangszustand) dar. Bebauungsseitig ist es die heutige Bebauung (nach aktuellstem Luftbild, Stand Ende 2009). Bzgl. des Verkehrs gelten die Verkehrsbelastung sowie die Emissionsfaktoren des Jahres 2008. Für die emissionserklärungspflichtigen Anlagen wurden nach Absprache mit dem Umweltamt Düsseldorf die Emissionserklärungen des Jahres 2004 zugrunde gelegt (mit Ausnahme der Firma Muskator; hier wurde die Emissionserklärung 2008 zugrunde gelegt).

Das Szenarium I stellt bebauungsseitig den Planzustand nach erfolgtem Ausbau der Gewerbe- und Mischstrukturen im Medienhafen und der angrenzenden Hafengebiete entlang der Speditions- und Kesselstraße dar. Basis für die Bebauung des Planzustandes bilden die Lagepläne der entsprechenden B-Planentwürfe Kesselstraße/Speditionstraße sowie die Bebauungsstrukturen, die vom TÜV Nord im Zuge der Lärmberechnung verwendet wurden, letztere korrigiert anhand aktueller 3-D-Luftbildaufnahmen. Emissionsseitig werden bei diesem Szenarium die für das Jahr 2015 prognostizierten Verkehrsbelastungen, allerdings im Sinne einer konservativen Abschätzung die Emissionsfaktoren des Jahres 2008, gewählt. Für die emissionserklärungspflichtigen Anlagen wurde nach Absprache mit dem Umweltamt Düsseldorf wie für den Istzustand die Emissionserklärung des Jahres 2004 zugrunde gelegt. Die anderen Quellen sowie die nicht genehmigungspflichtigen Anlagen werden unverändert aus dem Istzustand übernommen.

Das Szenarium III ist bzgl. der Bebauung sowie der Emissionen für die Quellgruppe Verkehr, Schiff und nicht genehmigungspflichtige Anlagen identisch mit dem Szenarium I. Bei den emissionserklärungspflichtigen Anlagen wird in Anlehnung an die neue TA Luft die Emissionskonzentration bei allen gefassten Quellen, bei denen in den Szenarien I und II die Emissionskonzentration auf 50 mg/m³ (Gesamtstaub) festgelegt war, auf 20 mg/m³ (Gesamtstaub) begrenzt.

Das Szenarium IV unterscheidet sich von dem Szenarium III lediglich in einer weiteren Reduzierung der Emissionskonzentration bei den emissionserklärungspflichtigen Anlagen, deren Emissionskonzentration bei Szenarium III auf 20 mg/m³ (Gesamtstaub) begrenzt wurde, auf 5mg/m³ (Gesamtstaub). Die Randbedingungen für die Szenarien III und IV bzgl. der angesetzten Gesamtstaubkonzentrationen werden im Kapitel 3.1 noch näher ausgeführt.

3 Emissionen

Die Emissionssituation im Untersuchungsgebiet und der näheren Umgebung ergibt sich aus der Summe der Emissionen verschiedener Quellgruppen. Die im Projektgebiet relevanten Quellgruppen sind Industrieanlagen, Straßen-, Schienen- und Schiffsverkehr, sowie Hausbrand- und Kleinfeuerung.

In den folgenden Unterkapiteln werden die Datengrundlagen der einzelnen Quellgruppen beschrieben und die entsprechenden Emissionen dargestellt.

3.1 Quellgruppe Industrie

Hauptverursacher industrieller Emissionen stellen (meist) Betriebe dar, die nach § 27 des Bundes-Immissionsschutzgesetzes (BImSchG) verpflichtet sind, Emissionserklärungen zu erstellen. Dies betrifft bis auf einige Ausnahmen die genehmigungspflichtigen Anlagen nach § 4 BImSchG. Die Emissionen dieser Betriebe werden in Kapitel 3.1.1 behandelt.

Darüber hinaus können jedoch auch nicht-emissionserklärungspflichtige Betriebe Stäube in relevanten Mengen emittieren. Aus diesem Grund wurden auch die nicht-emissionserklärungspflichtigen Betriebe im Düsseldorfer Hafen analysiert und in Hinblick auf ihr Potenzial zur Staubemission bewertet. Art und Umfang dieser Analyse sowie die Ergebnisse der Bewertung relevanter Betriebe werden in Kapitel 3.1.2 näher beschrieben.

3.1.1 Betriebe mit Emissionserklärungspflicht

Zur Bestimmung der Emissionen aus genehmigungsbedürftigen Anlagen wurden vom Umweltamt der Stadt Düsseldorf die Emissionserklärungen des Jahres 2004 bereitgestellt. Diese enthalten neben den Koordinaten der Emissionsquelle und der im Jahr emittierten Staubmassen (Auswurf) Informationen zur Quellhöhe, dem Abgasvolumenstrom, der Abgastemperatur und anderen für die Immissionsberechnung nützlichen Parametern. Emissionserklärungspflichtige Betriebe am Rand des Untersuchungsgebietes, für die keine ausführlichen Emissionserklärungen zur Verfügung standen, die aber dennoch in die Immissionsberechnung eingehen sollten, wurden aus dem landesweiten Emissionskataster Luft des Landes NRW ergänzt, welches ebenfalls auf den Emissionserklärungen aufbaut.

Nach Prüfung der Daten der Emissionserklärungen ist festgestellt worden, dass die Koordinaten der angegebenen Quellen in vielen Fällen falsch verortet sind. Aus diesem Grund war eine umfangreiche Nachbearbeitung der Koordinaten notwendig. Diese erfolgte in enger Zusammenarbeit mit dem Umweltamt der Stadt Düsseldorf. Für die Firma Muskator beispielsweise musste dabei insgesamt (Koordinaten + Emissionen) auf die Emissionserklärung 2008 zurückgegriffen werden, da ein Großteil der Lagekoordinaten der Emissionsquellen in der Emissionserklärung 2004 inkorrekt waren, sich aber die Werte aus der Emissionserklärung

2008 nicht mehr den Quellbezeichnungen von 2004 zuzuordnen ließen. Für den Neusser Hafen (Hintergrundbelastung) erfolgte nach Plausibilitätsprüfung eine Versetzung von falsch verorteten Quellen auf Basis aktueller Luftbilder, ISA-Daten (Informationssystem Stoffe und Anlagen des Landes Nordrhein-Westfalen) und Hafenübersichtsplänen.

Die vollständig korrigierten und endgültig für die Berechnungen verwendeten Koordinaten wurden vor der Verwendung nochmals vom Auftraggeber geprüft und als korrekt erachtet.

Bild 3.1 zeigt die korrigierte Lage der Emissionsquellen aus den Emissionserklärungen bzw. dem Emissionskataster NRW. Die Farbgebung stellt ein quantitatives Maß für den Gesamtauswurf (in kg/a) der einzelnen Quellen dar. Eine tabellarische Auflistung der Quellen ist in Anhang A dargestellt. Die meisten der insgesamt 375 Quellen (Anmerkung: ein Betrieb hat meist mehrere Quellen) befinden sich dabei in den beiden Industriehäfen von Düsseldorf und Neuss. Auch unmittelbar nördlich des Neusser Hafens und in Düsseldorf-Heerdt liegen noch Akkumulationen von Emissionsquellen vor. Im übrigen Bereich treten nur noch wenige vereinzelte Quellen emissionserklärungspflichtiger Betriebe auf.

Die 2 km-Linie um den Düsseldorfer Hafen ist bei der Auswahl der Quellen kein absolutes Kriterium, sondern dient lediglich als grobes Hilfsmittel zur Differenzierung zwischen Quellen, die für das Düsseldorfer Hafengebiet relevant sind, sowie weiter entfernten Quellen. Der Neusser Hafen, der mit seinen zahlreichen Industriebetrieben eine Hauptemissionsquelle außerhalb des Düsseldorfer Hafens darstellt, wurde somit trotzdem als Ganzes erfasst, obwohl der Westteil des Hafens knapp mehr als 2 km vom Düsseldorfer Hafen entfernt liegt.

Der Auswurf von PM10 [kg/a] (siehe auch Spalte 5 in der Tabelle A.1 des Anhangs A) ist den Emissionserklärungen der Betriebe entnommen und wird dort als prozentualer Anteil der Gesamtstaubemissionen ermittelt. Der PM10-Anteil variiert dabei je nach Art der vorhandenen Abluftreinigungsanlage und wird von dem bundeseinheitlich verwendeten Programm zur Erstellung der Emissionserklärung (BUBE) automatisch vorgegeben. Für Taschenfilter und Schlauchfilter mit Druckstoßabreinigung wird z.B. ein PM10-Anteil von 85% und bei Tangentialzyklonen von 65% angesetzt.

Insgesamt werden von den hier betrachteten emissionserklärungspflichtigen Betrieben 164,3 t PM10 pro Jahr in die Atmosphäre emittiert. Die Betriebe des Düsseldorfer Haupthafens verursachen ca. 28% dieser Emissionen. Die folgende Tab. 3.1 gibt eine Übersicht über die emissionserklärungspflichtigen Betriebe im Düsseldorfer Haupthafen und deren Beitrag zur Gesamtemission. Die jeweils zugrunde gelegte Emissionserklärung (EE 2004 bzw. EE 2008) ist ebenfalls aufgeführt.

Alle

Betrieb Quellen PM10-Emission ΕE Futtermittelbetrieb 1 47 41.186 2004 Baustoff- und Recycling-Betrieb 3 1.791 2004 Futtermittelbetrieb 2 46 2008 1.388 Asphaltmischwerk 6 686 2004 Ortsansässige Hafen-GmbH 7 2004 557 Kraftwerksbetrieb 6 187 2004 2004 Werk für Beschichtungen / Kleber / Reiniger 4 13 1 0 **GuD-Kraftwerk** 2004

Tab. 3.1: Übersicht der emissionserklärungspflichtigen Emittenten im Düsseldorfer Hafen (die Anzahl der Quellen beinhaltet nur gefasste Quellen)

Die Weiterentwicklungen im Bereich der technischen Abgasreinigung führen auch zu schärferen Emissionsgrenzwerten in den betreffenden Rechtsnormen. Allgemeine Grenzwerte für Gesamtstaub gibt dabei in Deutschland (u. a.) die Technische Anleitung zur Reinhaltung der Luft (TA Luft). Die TA Luft wurde 1986 erstmals erlassen und 2002 durch die neue TA Luft abgelöst. Um den Einfluss der zunehmenden Verschärfung der Emissionsgrenzwerte zu untersuchen bzw. um im Hinblick auf die Prognose der Luftqualität nach der strukturellen Weiterentwicklung des Hafens auch die zukünftige Reduzierung der Schadstoffkonzentration im Abgas zu berücksichtigen, wurden in Bezug auf die Emissionen der emissionserklärungspflichtigen Betriebe verschiedene Planungsvarianten/Szenarien (siehe Kapitel 2) betrachtet.

120

45.809

So wurden für Szenario I und II die Werte aus den Emissionserklärungen 2004 bzw. 2008 verwendet. In der Emissionserklärung von 2004 sind für mehrere Quellen emittierte Gesamtstaubkonzentrationen von 50mg/m³ angegeben. Nach der TA-Luft von 2002 ist jedoch für alle Quellen der Grenzwert von 20 mg/m³ als Massenkonzentration für Gesamtstaub in der Abluft einzuhalten. Daher wurden in Szenarium III für Futtermittelbetriebe entsprechend den Vorgaben der TA-Luft 2002 die PM10-Emissionen in kg/a neu berechnet. Nach TA-Luft sind die zuständigen Immissionsschutzbehörden dazu verpflichtet, Genehmigungsbescheide für Altanlagen an den geänderten Grenzwert anzupassen. Insofern spiegelt das Szenario III die nach Genehmigungslage theoretisch maximal möglichen Emissionsverhältnisse wieder.

Zum Nachweis, dass der Grenzwert von 20 mg/m³ eingehalten wird, haben die zwei Futtermittelbetriebe in den Jahren 2007 und 2008 an exemplarisch ausgewählten Quellen Emissionsmessungen durchführen lassen. Die bisherigen Messergebnisse zeigen, dass der Grenzwert von 20 mg/m³ deutlich unterschritten wird. Für Quellen, bei denen die Abluftreinigung durch Zyklone erfolgt, lagen die gemessenen Konzentrationen zwischen 1,5 und 4,6 mg/m³. Für Quellen, bei denen die Abluftreinigung durch Filtersysteme erfolgt – das trifft für ca. 80% der Quellen zu –, wurden Gesamtstaubkonzentrationen < 0,27mg/m³ bis 1mg/m³ gemessen. Realistisch sind daher deutlich geringere Emissionen als im Szenario III zu erwarten. Daher wurde für das Szenario IV eine Gesamtstaubkonzentration von 5mg/m³ angenommen und die PM10-Emissionen in kg/a ebenfalls neu berechnet. Das Szenario IV trägt

also einerseits der Tatsache Rechnung, dass die Mehrzahl der Quellen auf Grund der eingesetzten Filtertechnik den Grenzwert der TA-Luft 2002 erheblich unterschreitet. Zum anderen wurde berücksichtigt, dass dennoch einzelne Quellen den Grenzwert ausschöpfen könnten. Die gesamten PM10-Emissionen beider Firmen reduzieren sich gegenüber dem Ausgangsszenario (Szenario I, II mit 42,6 t) im Szenario III auf 25,4 t und im Szenario IV auf 6,8 t.

Alle anderen Parameter, die Auswirkungen auf die Staubemissionen haben können, wie etwa eingesetzte Rohstoffe, Betriebsstunden oder Abgasvolumenströme sind in allen Szenarien gleich, da sie sich aus den zugrunde liegenden Emissionserklärungen ergeben.

Tab. 3.2: Grenzwerte für Gesamtstaub, einschließlich Feinstaub, der Technischen Anleitung zur Reinhaltung der Luft (TA Luft)

	TA-Luft 1986			TA-Luft 2002		
zulässiger Höchstwert der Massenkonzentration von	Massenstrom 50 mg/m³	>	0,5 kg/h:	Massenstrom 20 mg/m³	>	0,2 kg/h:
Gesamtstaub im Abgas	Massenstrom 150 mg/m³	≤	0,5 kg/h:	Massenstrom 150 mg/m³	≤	0,2 kg/h:

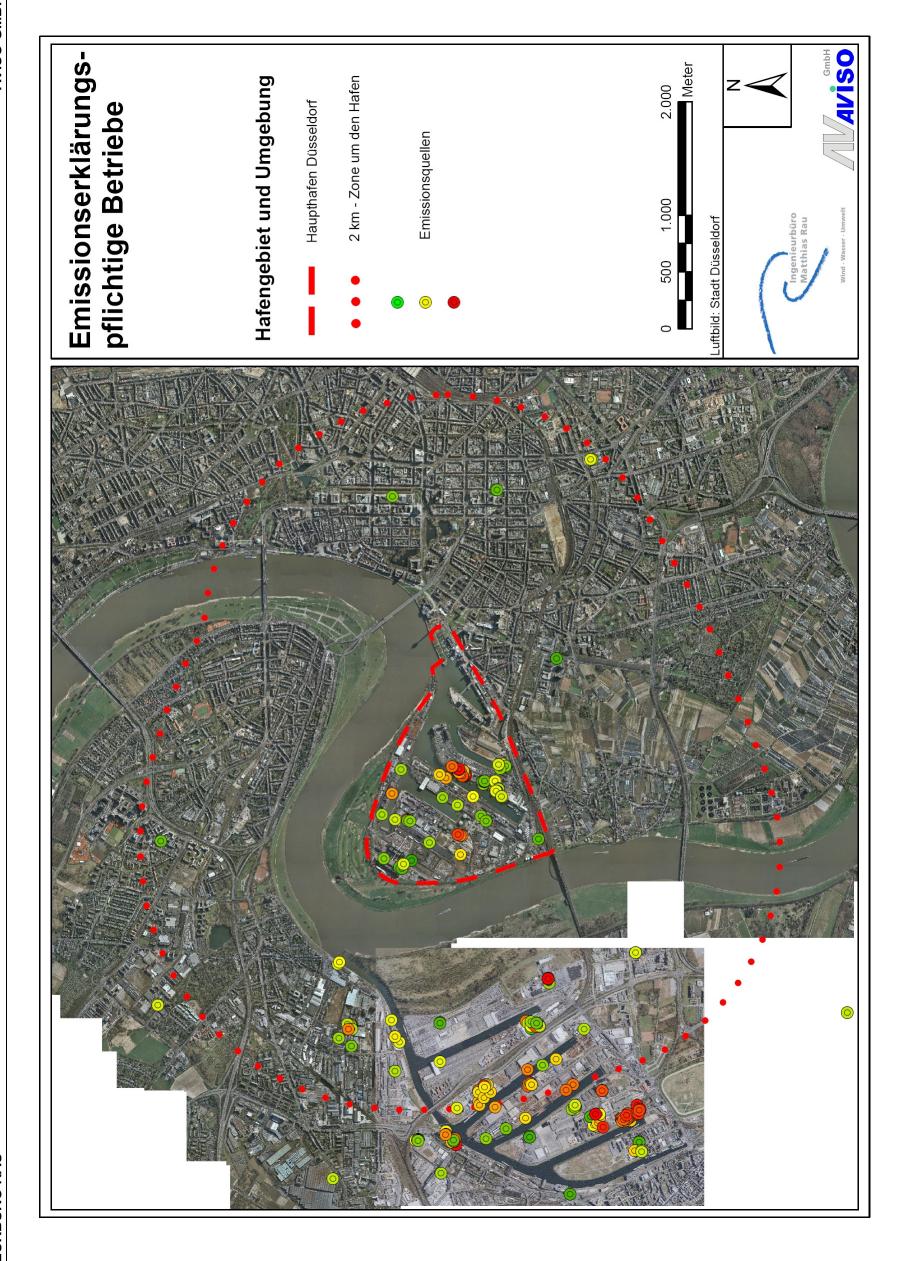


Bild 3.1: Lage und relative Emissionen der Quellen von emissionserklärungspflichtigen Anlagen (Bezugsjahr der Emissionserklärungen: 2004/2008)

3.1.2 Staubrelevante Betriebe ohne Emissionserklärungen

Zusätzlich zur Auswertung der Emissionserklärungen wurden die nicht-emissionserklärungspflichtigen Betriebe im Düsseldorfer Hafen in Bezug auf ihre Relevanz zur PM10-Emission hin untersucht und gegebenenfalls als (relevanter) Emittent ausgewiesen. Für die Beurteilung wurden die vom Umweltamt bereitgestellten Unterlagen (/ANECO 2002/, /BKR 2007/, /Dütemeyer 2008/) und Luftbilder, frei erhältliche Unterlagen (Bebauungspläne des Hafens, etc.) sowie weitere eigene Recherchen und die Ergebnisse von Vor-Ort-Besichtigungen berücksichtigt.

Zunächst wurden innerhalb einer ersten Recherche vierzehn Betriebe als potenzielle Staubemittenten eingestuft bzw. als "weiter zu prüfen" ausgewiesen.

Nach weiteren Recherchen und Absprachen mit dem Umweltamt konnten diese Betriebe im Zuge einer ersten Beurteilung wie folgt bewertet werden:

Tab. 3.3: Erste Beurteilung der zu prüfenden nicht-emissionserklärungspflichtigen Betriebe

Betrieb	Beurteilung
Betrieb 1	 die Firma stellt pulverförmiges Wasch- und Reinigungsmittel her die einzelnen Anlagenteile (Sprühturm, Siloanlage, Mischanlagen) werden über Entstaubungsanlagen entstaubt, wobei konkrete Angaben zur den Entstaubungsanlagen und dem Reststaubgehalt nicht vorliegen weitere und aktuellere Informationen sollen bei einer Betriebsbesichtigung erfasst werden
Betrieb 2	 für die Anlage liegen Staubauflagen von 1978 vor (< 50 mg/m³ in der Abluft der Entstaubungsanlage) ob die Anlage noch den Auflagen entspricht soll bei einer Betriebsbesichtigung geprüft werden Angaben über den Reststaubgehalt der Filteranlage wurden durch das Umweltamt übermittelt
Betrieb 3	 Anlage arbeitet weitestgehend als geschlossenes System, bei den offenen Lager- und Verkehrsflächen wird die Staubentwicklung durch Befeuchtung begrenzt Angaben über den Reststaubgehalt der Filteranlage wurden durch das Umweltamt übermittelt weitere Angaben sollen bei einer Betriebsbesichtigung geprüft werden
Betrieb 4	 Betrieb wurde in /ANECO 2002/ als signifikanter Staubemittent ausgewiesen und für ihn die diffusen Emissionen abgeschätzt weitere und aktuellere Informationen sollen bei einer Betriebsbesichtigung erfasst werden

Betrieb 5 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist soll dieser zur Bestätigung der Annahmen von außen betrachtet werden - Betrieb für Oberflächentechnik (Strahlentrostung, Lackierung, Beschichtung, etc.) - die Entstaubung erfolgt (u. a.) über Zyklonfilteranlagen - genauere Informationen über den Anlagentyp und den Stoffumsatz liegen allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung erfasst werden - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
- da der Betriebshof von der Straße aus einzusehen ist soll dieser zur Bestätigung der Annahmen von außen betrachtet werden - Betrieb 6 - Betrieb für Oberflächentechnik (Strahlentrostung, Lackierung, Beschichtung, etc.) - die Entstaubung erfolgt (u. a.) über Zyklonfilteranlagen - genauere Informationen über den Anlagentyp und den Stoffumsatz liegen allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung erfasst werden - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
Betrieb 6 - Betrieb für Oberflächentechnik (Strahlentrostung, Lackierung, Beschichtung, etc.) - die Entstaubung erfolgt (u. a.) über Zyklonfilteranlagen - genauere Informationen über den Anlagentyp und den Stoffumsatz liegen allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung erfasst werden Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
Betrieb 6 - Betrieb für Oberflächentechnik (Strahlentrostung, Lackierung, Beschichtung, etc.) - die Entstaubung erfolgt (u. a.) über Zyklonfilteranlagen - genauere Informationen über den Anlagentyp und den Stoffumsatz liegen allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung erfasst werden Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
etc.) die Entstaubung erfolgt (u. a.) über Zyklonfilteranlagen genauere Informationen über den Anlagentyp und den Stoffumsatz liegen allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung er- fasst werden Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containerge- stellung als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmate- rial; deshalb wohl keine relevanten PM10-Emissionen
- die Entstaubung erfolgt (u. a.) über Zyklonfilteranlagen - genauere Informationen über den Anlagentyp und den Stoffumsatz liegen allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung er- fasst werden Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containerge- stellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmate- rial; deshalb wohl keine relevanten PM10-Emissionen
- genauere Informationen über den Anlagentyp und den Stoffumsatz liegen allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung erfasst werden Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
allerdings nicht vor und sollen deshalb bei einer Betriebsbesichtigung erfasst werden Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
Betrieb 7 - vermutlich auf Freiflächen nur Lagerung von Metallschrott und dadurch nicht relevant als PM10-Emissionsquelle im Hafen - da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
relevant als PM10-Emissionsquelle im Hafen da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung als nicht besonders relevant einzustufen Betrieb 9 Straßen- und Tiefbauunternehmen nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
 da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur Bestätigung der Annahmen von außen betrachtet werden Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
Betrieb 8 - hauptsächlich Umschlag von Schrotten (grobes Material) und Containergestellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
stellung - als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
- als nicht besonders relevant einzustufen Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
Betrieb 9 - Straßen- und Tiefbauunternehmen - nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmaterial; deshalb wohl keine relevanten PM10-Emissionen
 nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmate- rial; deshalb wohl keine relevanten PM10-Emissionen
rial; deshalb wohl keine relevanten PM10-Emissionen
- da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur
Bestätigung der Annahmen von außen betrachtet werden
Betrieb 10 - Bauunternehmen
- nur sehr kleine Freilager, vermutlich für den Eigenbedarf an Baustellenmate-
rial;deshalb wohl keine relevanten Emissionen
- da der Betriebshof von der Straße aus einzusehen ist, soll dieser zur
Bestätigung der Annahmen von außen betrachtet werden
Betrieb 11 - nach Angaben des Umweltamtes, welches Rücksprache mit dem Betrieb
gehalten hat, sind keine relevanten Staubemissionen zu erwarten
Betrieb 12 - Demontage von Sprintern (DaimlerChrysler) für den Transport nach Übersee
(USA), ca. 90 Fahrzeuge pro Woche (Stand 2005)
- Außerdem Verladung von sonstigem (nicht staubendem) Speditionsgut (z B.
Maschinen)
- keine staubrelevanten Prozesse
Betrieb 13 - Lagerung von Rohren (u. a.) auf Freiflächen; deshalb wohl keine relevanten
Emissionen
- da der Betriebshof von der Straße aus einzusehen ist soll dieser zur Bestäti-
 da der Betriebshof von der Straße aus einzusehen ist soll dieser zur Bestätigung der Annahmen von außen betrachtet werden
gung der Annahmen von außen betrachtet werden

Die Betriebsgelände von fünf Firmen wurden anschließend vor Ort betrachtet und als nicht staubrelevant eingestuft. Grund ist, dass auf den Freiflächen hauptsächlich gröbere Materialien, wie Metallschrott oder Metallrohre gelagert werden, was zu wenigen oder keinen diffusen Emissionen führt, und zudem diese Flächen befestigt sind, wodurch auch die Staubentstehung durch Aufwirbelung aufgrund von Fahrbewegungen vermindert wird. Weiterhin sind die Emissionen durch Aufwirbelung und Abrieb auch als sehr gering einzuschätzen, weil die Anzahl der Fahrbewegungen auf den Grundstücken generell nicht besonders hoch ist. Auf dem Gelände einer Firma wird der Umschlag sogar teilweise durch Kräne getätigt.

Für weitere sechs Betriebe wurden nach weiteren Recherchen Staubemissionen ausgewiesen. Dazu wurden die recherchierten und die vom Umweltamt übermittelten Informationen ausgewertet sowie Betriebsbesichtigungen bei den betreffenden Betrieben durchgeführt. Die Betriebsbesichtigungen wurden von Vertretern der jeweiligen Betriebe geleitet und von Vertretern des Umweltamtes begleitet. Die Auswahl der Betriebe, die vor Ort besichtigt werden sollten, erfolgte dabei in enger Abstimmung mit dem Umweltamt. Aus Gründen des Datenschutzes wird auf die Beschreibung der konkreten Vorgehensweisen zur Ableitung der Emissionen sowie die Darstellung der Ergebnisse bei den genannten sechs Betriebe verzichtet. Tab. 3.4 zeigt eine anonymisierte tabellarische Zusammenfassung der Abschätzungen.

Tab. 3.4: Übersicht der nicht emissionserklärungspflichtigen Emittenten im Düsseldorfer Hafen (die Anzahl der Quellen beinhaltet nur gefasste Quellen)

Betrieb	Anzahl der Quellen	PM10-Emissionen in kg/a
Betrieb 1	23	2.219
Betrieb 2	2	366
Betrieb 3	7	422
Betrieb 4	24	17.436
Betrieb 6	2	910
Betrieb 14	0	13
alle	58	20.731

Die gesamten PM10-Emissionen der hier als relevant eingestuften, nicht-emissionserklärungspflichtigen Anlagen betragen 21,4 t pro Jahr.

3.2 Quellgruppe Straßenverkehr

Entsprechend der Planungsvarianten wurden die Straßenverkehrsemissionen für die Jahre 2008 und 2015 berechnet.

Die Emissionen des Kfz-Verkehrs hängen generell von verschiedenen Einflussgrößen ab, die sich im Wesentlichen in zwei Gruppen einteilen lassen. Dies sind zum einen die verkehrsspezifischen und zum anderen die kraftfahrzeugspezifischen Kenngrößen.

Zu den verkehrsspezifischen Kenngrößen zählen vor allem die streckenabschnittsspezifischen Verkehrsstärken und die Verkehrsablaufbedingungen (z.B. Verkehrssituation, Stauanteil).

Die kraftfahrzeugspezifischen Kenngrößen (spezifische Emissionsfaktoren in g/Fz*km) hängen vor allem von der Zusammensetzung der Fahrzeugflotte im Untersuchungsgebiet, dem betrachteten Bezugsjahr und der eingesetzten Kraftstoffqualität ab.

Unter Verwendung der spezifischen Emissionsfaktoren für das Bezugsjahr 2008 (die in analoger Weise zu dem Vorgehen für das landesweite Emissionskatasters Nordrhein-Westfalen /AVISO 2009/ bzw. des LRP Düsseldorf /AVISO 2007/ auf Basis der Daten aus dem Handbuch Emissionsfaktoren des Straßenverkehrs /INFRAS 2004/ und unter Berücksichtigung der regionalen Bestandszusammensetzung für Düsseldorf für das Bezugsjahr 2008 ermittelt wurden) wurden die Schadstoffemissionen des fließenden Kfz-Verkehrs für die relevanten Straßenabschnitte berechnet. Die Emissionsfaktoren für Aufwirbelung und Abrieb wurden dabei in Anlehnung an /SCHNEIDER 2006/ ermittelt.

Nach Vorgabe des Auftraggebers werden die Emissionsfaktoren 2008 auch für die Emissionsberechnung für das Prognosejahr 2015 verwendet.

Die Berechnung erfolgte mit dem Emissionsberechnungsmodell roadTEIM¹, das auf der in der VDI-Richtlinie VDI 3782 Blatt 7² beschriebenen Vorgehensweise basiert.

3.2.1 Straßenverkehr und Emissionen 2008

Grundlage für die Ermittlung der Verkehrsdatenbasis des Bezugsjahres 2008 waren die Werte des landesweiten Emissionskatasters NRW (Bezugsjahr 2007) im Bereich Düsseldorf /AVISO 2009/. Im Hafengebiet wurde das Netz verdichtet und mit von der Stadt zur Verfügung gestellten Daten ergänzt. Bei diesen Daten handelt es sich um die Ergebnisse aus Verkehrszählungen der Stadt Düsseldorf, Daten aus dem Verkehrsmodell der Stadt sowie den für die Bebauungspläne im Hafengebiet ermittelten und prognostizierten Verkehrswer-

roadTEIM (Transport-Emissions-Inventar-Modell, Kfz-Verkehr), AVISO GmbH, Aachen, laufende Weiterentwicklung

² VDI 3782 Blatt 7: Umweltmeteorologie, Kfz-Emissionsbestimmung, Luftbeimengungen. November 2003.

ten. Die Daten aus Kurzzeitzählungen wurden dabei nach /LENSING 2003/ auf jahresmittlere durchschnittliche tägliche Verkehrsstärken hochgerechnet.

Die Bezugshorizonte der verschiedenen Datenquellen außerhalb des landesweiten Emissionskatasters bzw. der Daten aus den Bebauungsplänen sind teilweise 2006 oder noch früheren Jahrgangs. Um die Entwicklung, die sich zwischen 2005 und 2008 vollzogen hat, zu berücksichtigen, wurden die für den LRP Düsseldorf /AVISO 2007/ angesetzten Entwicklungsfaktoren angepasst und auch hier zur Hochrechnung verwendet.

In Bild 3.2 und Bild 3.3 sind das Verkehrsnetz sowie die ermittelten Verkehrsbelastungen für Kfz und schwere Nutzfahrzeuge ohne Busse (sNoB) im Bezugsjahr 2008 für das Untersuchungsgebiet und seine Umgebung dargestellt.

Die höchsten Verkehrswerte im Bereich um den Hafen zeigen mit deutlich über 50.000 Kfz/24h die Völklinger Straße (B1) sowie der Rheinalleetunnel mit Rheinkniebrücke. Das Hafengebiet selbst wird von Osten her über die Plockstraße oder Gladbacher Straße angefahren. Die Zufahrt zum eigentlichen Hafengebiet erfolgt dann über die Franziusstraße und schließlich die Holz- und die Fringsstraße, die innerhalb des Hafens mit ca. 7.000 Kfz/24h auch die höchsten Verkehrsstärken aufweisen. Die Verkehrsmengen in den Sackgassen entlang der einzelnen Hafenbecken sind gering und stark vom Warenverkehr und der Anzahl der Beschäftigten der anliegenden Firmen abhängig. Sehr geringe Verkehrsmengen (470 Kfz/24h) zeigt dabei vor allem die Kesselstraße, da die dort einstmals ansässigen Betriebe nicht mehr vorhanden sind und dadurch ein Großteil der Grundstücke ungenutzt ist. Die nördlich gelegene Halbinsel entlang der Bremer Straße und Auf der Lausward kann zum einen über Am Fallhammer oder über eine Brücke zwischen Hamburger Straße und Bremer Straße befahren werden. Aufgrund des "Durchgangsverkehrs" zur Bremer Straße und der großen ansässigen Beton- und Umschlag-/Speditionsbetriebe ist das Verkehrsaufkommen in der Hamburger Straße mit ca. 4.500 Kfz/24h im nördlichen Teil noch relativ hoch. Die Straße Am Fallhammer wird hauptsächlich von Bediensteten des Kraftwerks oder als Zugang zu Auf der Lausward genutzt, wenn die Brücke in der Hamburger Straße geschlossen ist.

Der Anteil der schweren Nutzfahrzeuge ohne Busse beträgt über das gesamte Untersuchungsgebiet (Düsseldorf Hafen + 2 km) hinweg gemittelt 3,7%. Im Düsseldorfer Hafen selbst liegt der mittlere Anteil aufgrund des stark industriellen Charakters des westlichen Hafens bei 22,8%, wobei die Spannweite im sNoB-Anteil zwischen z. B. Am Fallhammer (7%) oder Speditionstraße (9%) (→ Straßen ohne ansässige, transportintensive Industrie) und Hamburger Straße (31%) oder Wesermünder Straße (31%) (→ Straßen mit transportintensiven Industrien) groß ist.

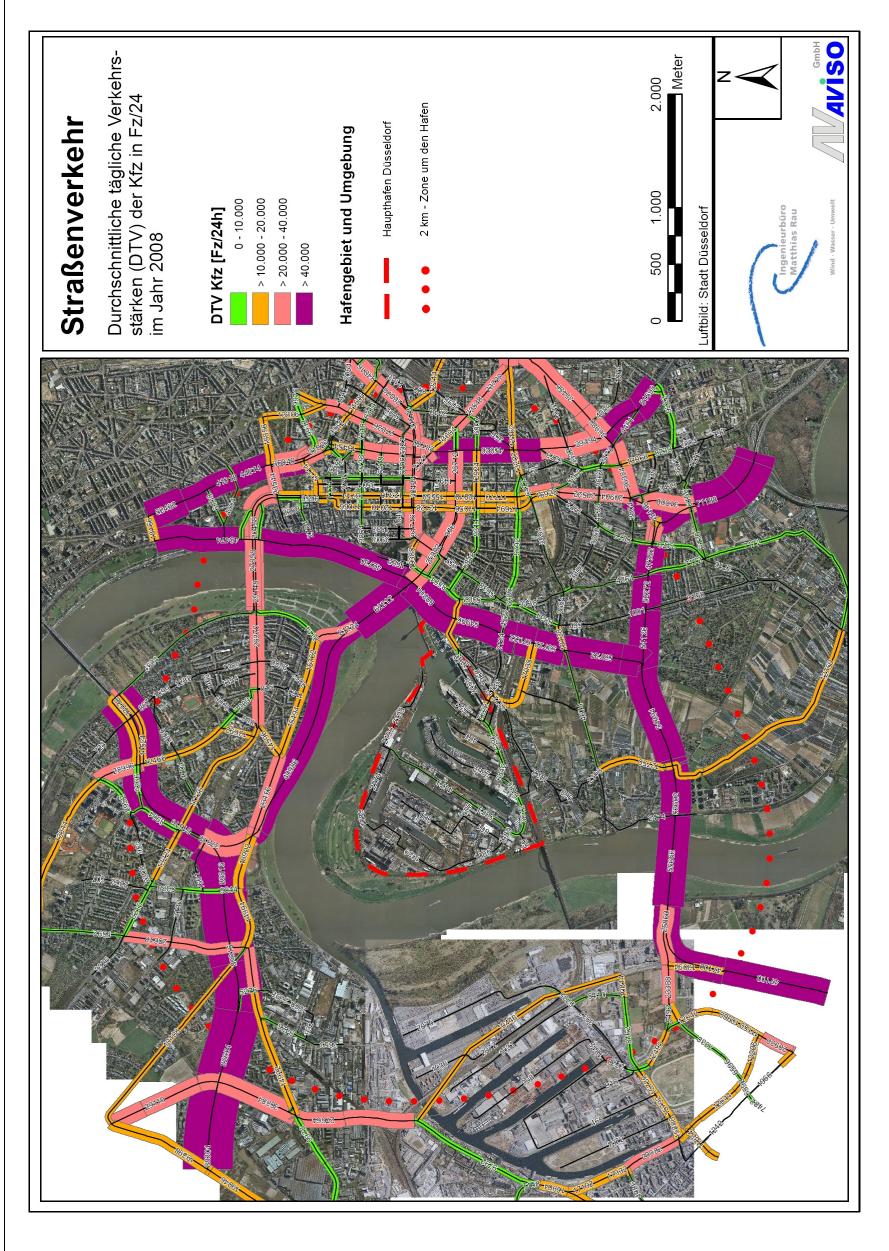


Bild 3.2: Kfz-Verkehrsbelastung im Untersuchungsgebiet für das Bezugsjahr 2008

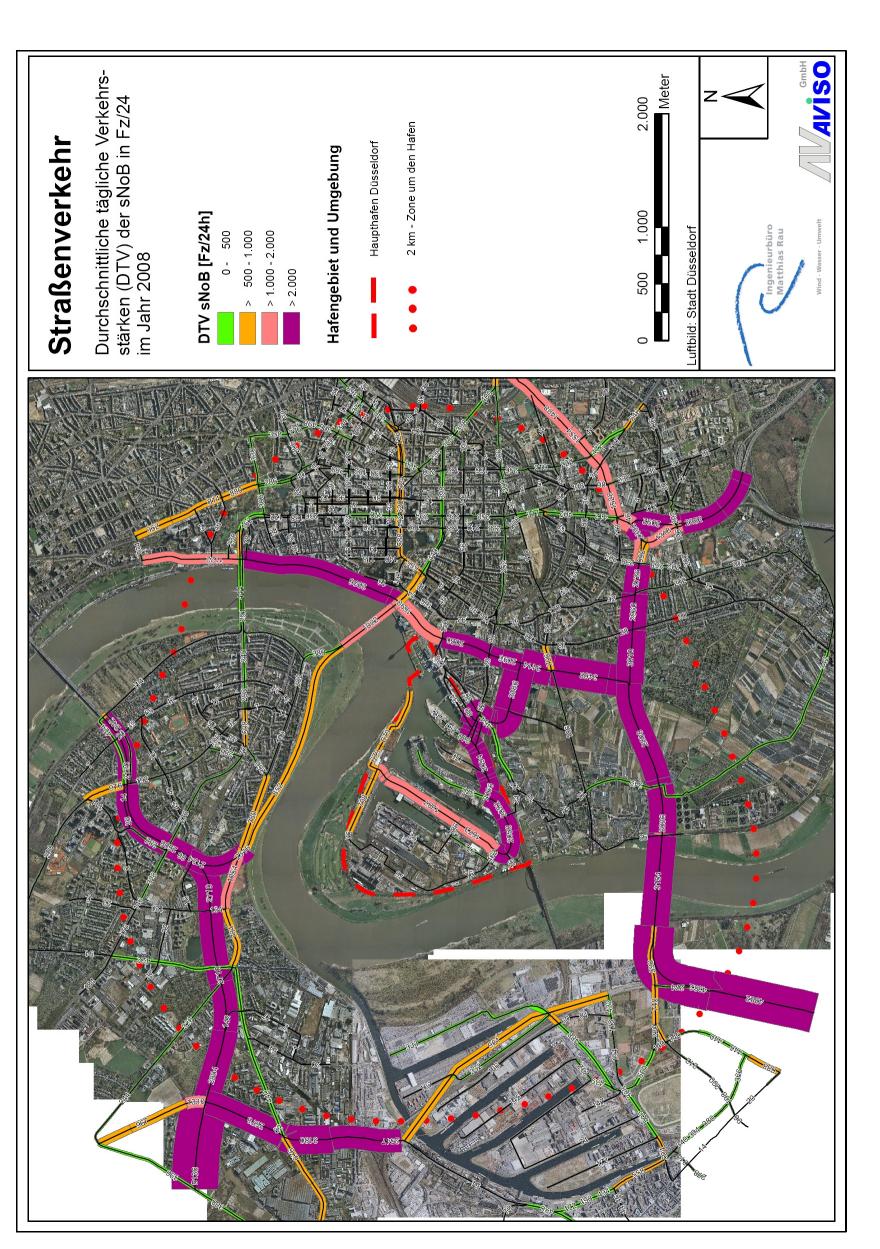


Bild 3.3: sNoB-Verkehrsbelastung im Untersuchungsgebiet für das Bezugsjahr 2008

Bild 3.4 und Tab. 3.5 stellen die Emissionsdichten des in Bild 3.2 und Bild 3.3 abgebildeten Kfz-Verkehrs dar. Insgesamt werden im abgebildeten Gebiet im Jahr 2008 62.347 kg PM10 in die Atmosphäre emittiert. Der Anteil der schweren Nutzfahrzeuge ohne Busse liegt dabei bei 28 %, der entsprechende Anteil an der Fahrleistung ist mit knapp 4% deutlich geringer und verdeutlicht den überproportionalen Beitrag dieser Fahrzeugklasse an den Gesamtemissionen.

Die räumliche Verteilung der Emissionen zeigt ein ähnliches Bild wie die Verkehrsbelastung. So ist im Düsseldorfer Hafen der Anteil der schweren Nutzfahrzeuge gegenüber dem Innenstadtgebiet zwar sehr hoch, allerdings wird dort aufgrund der niedrigen absoluten Kfz-Zahlen dennoch deutlich weniger PM10 emittiert als in den Hauptverkehrsstraßen des angrenzenden Stadtgebietes.

Tab. 3.5: PM10-Jahresemissionen des Straßenverkehrs im Düsseldorfer Hafen und Umgebung im Jahr 2008

		Pkw	INfz	Bus	Krad	Lkw	LzSz	Kfz
Fahrleistung	Tsd. FZkm/a	934.630,1	32.299,2	3.653,5	12.372,7	23.990,8	12.930,8	1.019.877,0
		91,6%	3,2%	0,4%	1,2%	2,4%	1,3%	100,0%
PM10 Abgas ges.	kg/a	10.826,5	1.650,3	660,6	371,7	4.113,1	2.668,3	20.290,4
		53,4%	8,1%	3,3%	1,8%	20,3%	13,2%	100,0%
PM10 AWAR2*	kg/a	29.189,9	968,9	1.133,9	390,6	6.779,7	3.593,6	42.056,7
		69,4%	2,3%	2,7%	0,9%	16,1%	8,5%	100,0%
PM10 Gesamt	kg/a	40.016,5	2.619,2	1.794,4	762,3	10.892,8	6.261,9	62.347,1
		64,2%	4,2%	2,9%	1,2%	17,5%	10,0%	100,0%

^{*} Aufw irbelung und Abrieb

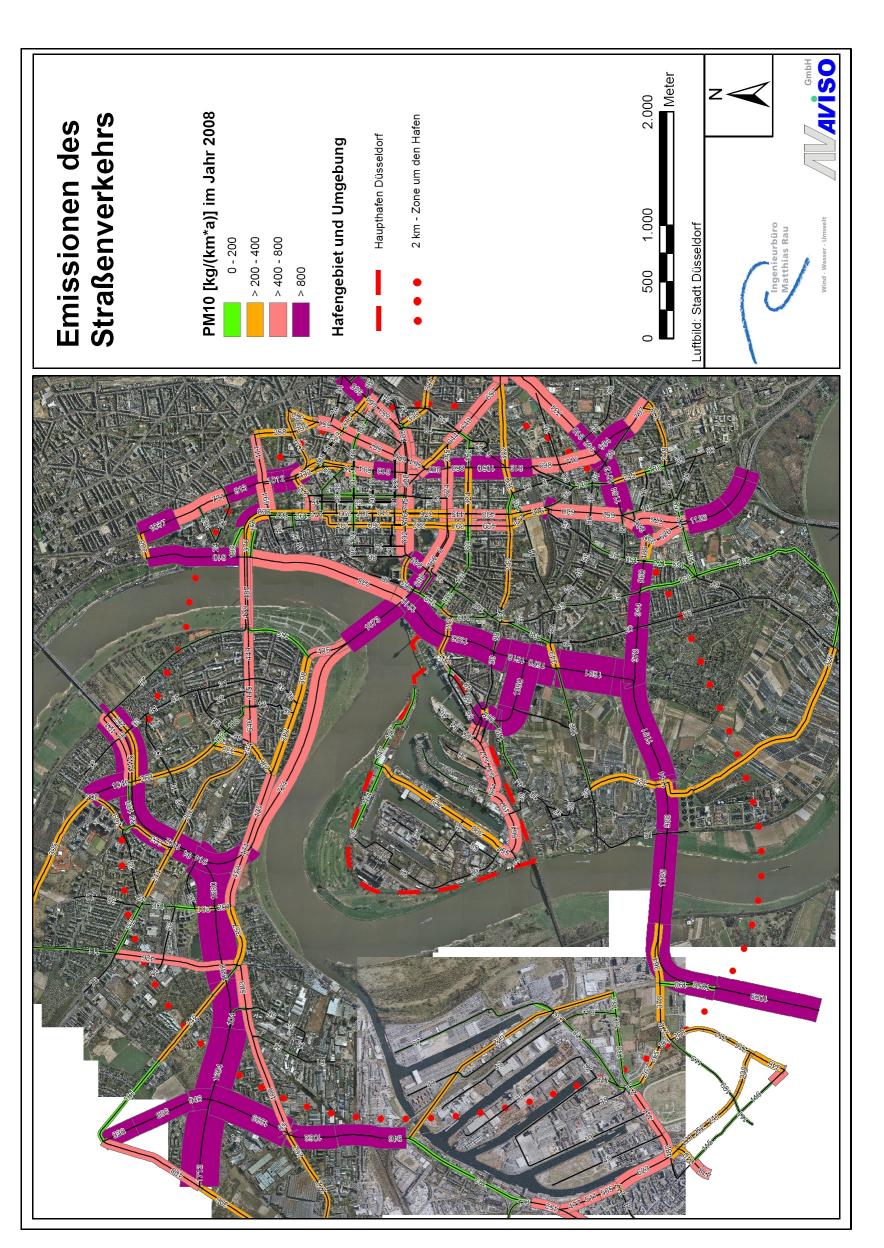


Bild 3.4: Emissionsdichten (kg/km*a) im Untersuchungsgebiet im Jahr 2008 (alle Fahrzeugarten)

3.2.2 Straßenverkehr und Emissionen 2015

Für das Prognosejahr 2015 wurden für einige Strecken im Hafen von der Stadt Düsseldorf Verkehrswerte angegeben. Diese stammen aus Untersuchungen, die im Rahmen der Bebauungspläne durchgeführt wurden und sind entsprechend in diesen veröffentlicht /Stadt Düsseldorf 2008a-e/. Strecken, für die keine prognostizierten Verkehrswerte für 2015 vorlagen, mussten hochgerechnet werden. Die Hochrechnungsfaktoren auf 2015 berücksichtigen dabei die aktuellen Entwicklungen im Straßenverkehr, so auch die momentane Wirtschaftskrise. Tab. 3..6 zeigt exemplarisch die Hochrechnungsfaktoren ausgehend von zwei Bezugsjahren.

Tab. 3.6: Hochrechnungsfaktoren differenziert nach verschiedenen Fahrzeugklassen

Fahrzeugklasse	2005-2015	2007-2015
Pkw	0,964	0,964
INfz	1,016	1,003
sNoB	0,943	0,950
Bus	1,000	1,000
Krad	1,020	1,007

Entsprechend der nur geringfügig von 100% abweichenden Beträge der Hochrechnungsfaktoren ergeben sich 2015 außerhalb des Hafens nur geringe Differenzen im Verkehrsbild zu 2008.

Mit den Zielsetzungen, die die städtische Planung vorsieht, sind jedoch im Hafengebiet selbst starke verkehrliche Veränderungen verbunden (siehe Bild 3.5 und Bild 3..6). So zeigen Kesselstraße und Speditionstraße aufgrund der größten, geplanten strukturellen Veränderung (Neuansiedlung von wohnlich und gewerblich genutzten Bebauungen) auch die größten Unterschiede im Verkehrsaufkommen zum Bezugsjahr 2008. Die Prognosen der Stadt gehen davon aus, dass der Verkehr in der Kesselstraße von 470 Kfz/24h in 2008 auf 5.160 Kfz/24h in 2015 zunimmt. Diese mehr als Verzehnfachung des Kfz-Verkehrs geht allerdings nur mit einer Verdoppelung des Lkw-Verkehrs einher, was wiederum den gewerblichen und wohnbaulichen Charakter der angestrebten Nutzung verdeutlicht. Hauptzubringer zu den neuen Gewerbegebieten bleiben auch weiterhin die Franzius- und die Holzstraße, wobei die Franziusstraße durch den vierspurigen Neu- und Ausbau Holzstraße entlastet wird. Die Franziusstraße selbst kann dabei nur noch in Richtung Westen befahren werden. Der aus dem Hafen ausfahrende Verkehr wird über die "neue Holzstraße" auf die ebenfalls bis dahin vierspurig ausgebaute Plockstraße geführt. Die Zunahmen des Verkehrs auf der Holzstraße östlich der Kesselstraße, bedingt durch die neue Nutzung des östlichen Hafens, betragen dabei ca. 80%.

Für die Straßen im westlichen Hafen enthalten die Prognosen für 2015, aufgrund der wohl sehr viel geringer zu erwartenden baulichen und strukturellen Änderungen, sehr viel gerin-

gere Steigerungen bezüglich des Verkehrs. So wird für die Weizenmühlenstraße lediglich eine Erhöhung des Lkw-Verkehrs um ca. 18% prognostiziert.

Für die (noch) weiter westlich liegenden Straßen wird nach /Stadt DÜSSELDORF 2008a, d, e/ zwar von einer Zunahme des Lkw-Verkehrs ausgegangen, konkrete Werte werden allerdings nicht angegeben. Um die Trendprognose dennoch zu berücksichtigen, wurde in den Straßen des westlichen Hafens der sNoB-Verkehr (inklusive Last- und Sattelzügen) analog zur Weizenmühlenstraße um 18% erhöht.

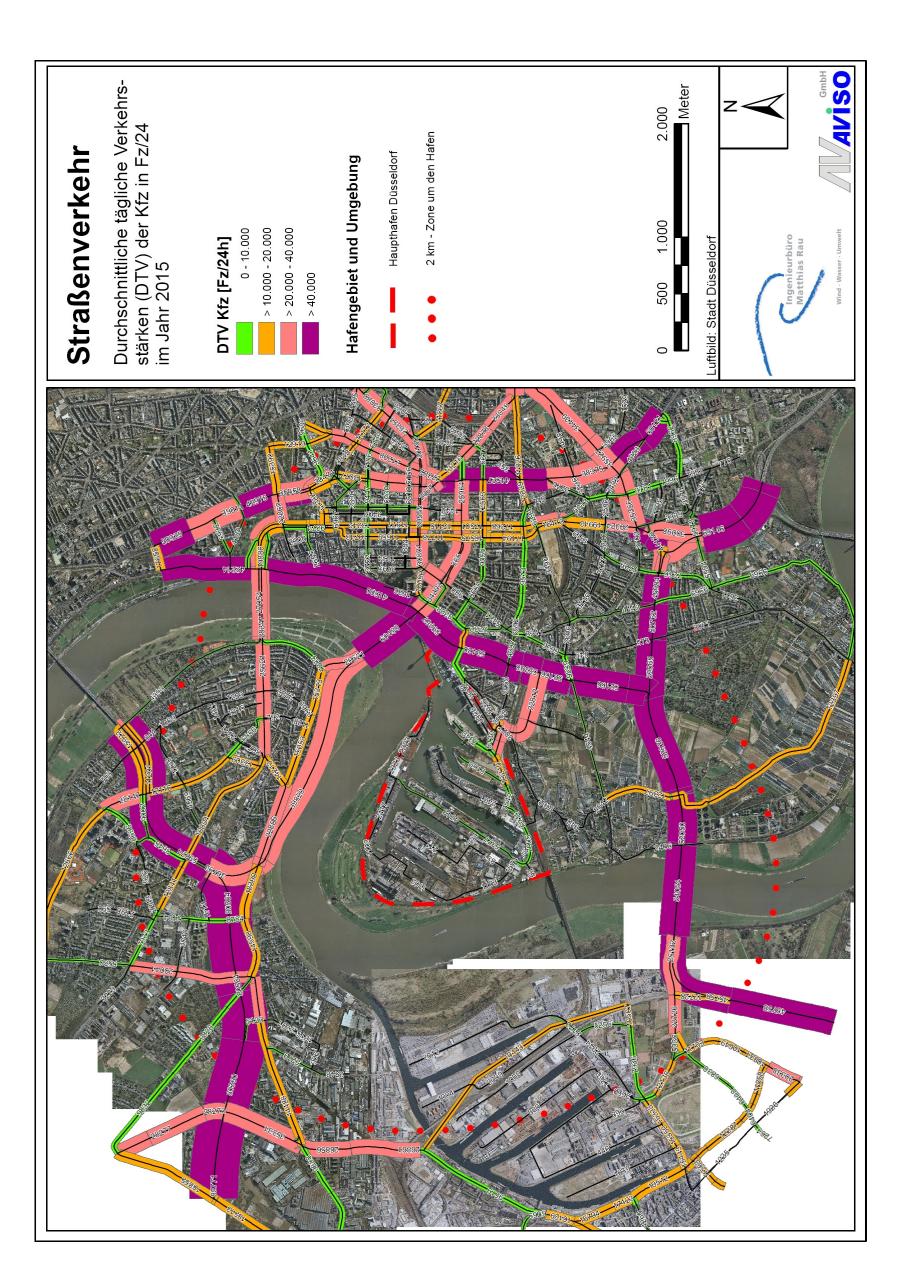


Bild 3.5: Kfz-Verkehrsbelastung im Untersuchungsgebiet für das Bezugsjahr 2015

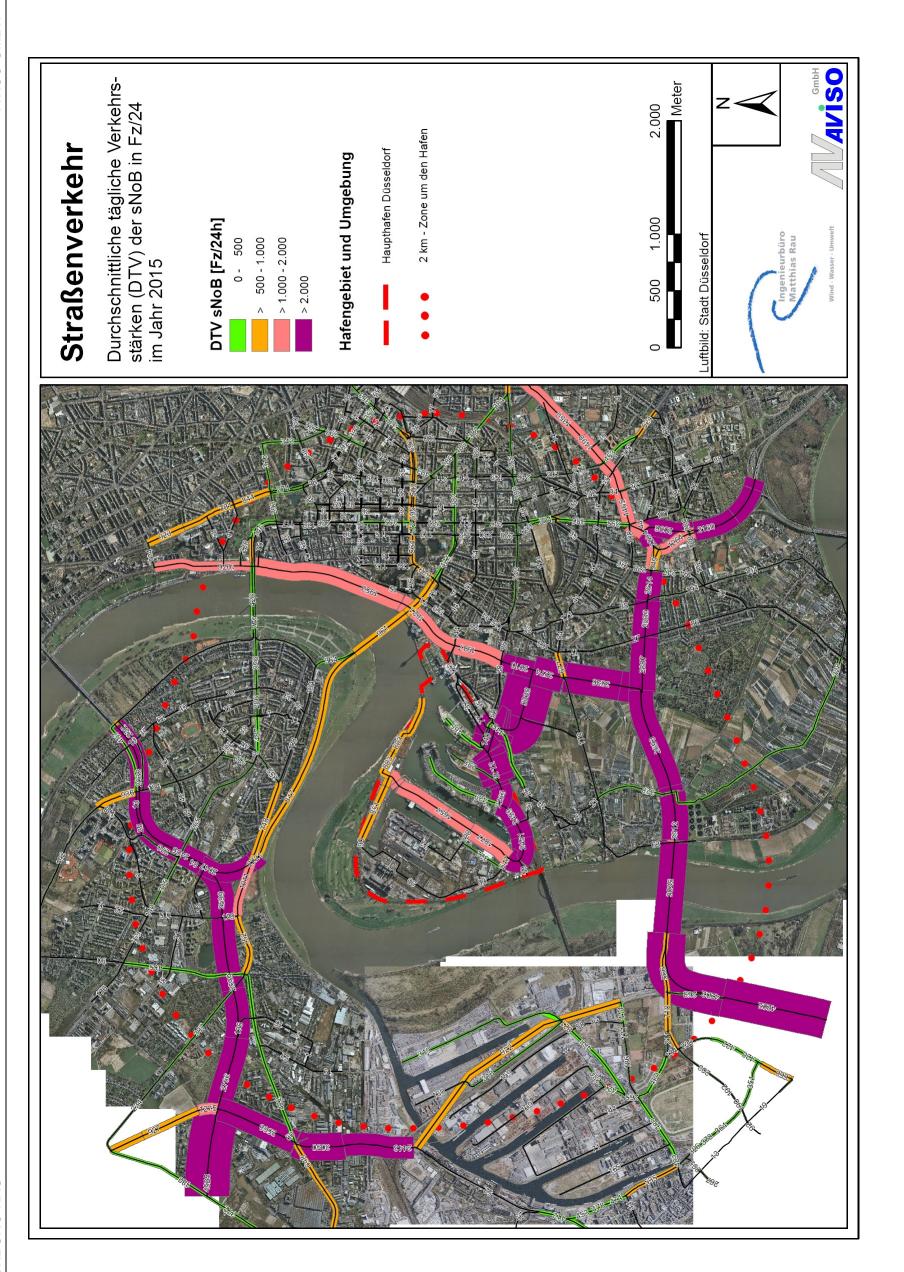


Bild 3.6: sNoB-Verkehrsbelastung im Untersuchungsgebiet für das Bezugsjahr 2015

Die auf Basis der Verkehrswerte für 2015 und der Emissionsfaktoren 2008 (im Sinne einer konservativen Abschätzung der zukünftigen Entwicklung des spezifischen Emissionsverhaltens der Fahrzeugflotte) berechneten Emissionen sind in Bild 3.7 und Tab. 3.7 dargestellt.

Im Allgemeinen würde eine schadstoffärmere Fahrzeugflotte in 2015 zu reduzierten Abgasemissionen führen oder z. B. im Falle einer Erhöhung der Fahrleistung zumindest den höheren Fahrleistungen entgegenwirken. Die spezifischen Emissionsfaktoren durch Aufwirbelung und Abrieb sind aber unabhängig von der Fahrzeugtechnik und werden sich daher bei veränderter Flottenzusammensetzung nicht verändern.

Somit führt der erhöhte Verkehr im östlichen Hafen auch zu deutlich höheren Emissionen in diesem Gebiet. Der Einfluss dieser Strecken auf die Emissionssumme des Gesamtgebietes ist jedoch aufgrund der immer noch relativ geringen Fahrleistung und Anzahl der Strecken gering. Insgesamt überwiegt hingegen die prognostizierte, leichte Abnahme des Pkw-Verkehrs im Stadtgebiet bis zum Jahr 2015, die zu einer geringen Abnahme der Fahrleistung und PM10-Gesamtemission gegenüber 2008 führt. Die Differenz der PM10-Jahresemissionen des Straßenverkehrs im Düsseldorfer Hafen zwischen den beiden betrachteten Jahren 2008 und 2015 ist abschließend in Tabelle 3.8 dargestellt.

Tab. 3.7: PM10-Jahresemissionen des Straßenverkehrs im Düsseldorfer Hafen und Umgebung im Jahr 2015

		Pkw	INfz	Bus	Krad	Lkw	LzSz	Kfz
Fahrleistung	Tsd. FZkm/a	913.945,1	33.144,3	3.657,9	12.611,6	23.853,7	12.970,4	1.000.183,1
		91,4%	3,3%	0,4%	1,3%	2,4%	1,3%	100,0%
PM10 Abgas ges.	kg/a	10.498,5	1.674,4	657,5	379,0	4.058,8	2.668,4	19.936,6
		52,7%	8,4%	3,3%	1,9%	20,4%	13,4%	100,0%
PM10 AWAR2*	kg/a	27.909,0	968,4	1.118,4	389,9	6.520,9	3.475,3	40.381,9
		69, 1%	2,4%	2,8%	1,0%	16,1%	8,6%	100,0%
PM10 Gesamt	kg/a	38.407,5	2.642,8	1.775,9	768,9	10.579,7	6.143,7	60.318,5
		63,7%	4,4%	2,9%	1,3%	17,5%	10,2%	100,0%

^{*} Aufw irbelung und Abrieb

Tab. 3.8: Differenz der PM10-Jahresemissionen des Straßenverkehrs im Düsseldorfer Hafen zwischen 2015 und 2008

		Pkw	INfz	Bus	Krad	Lkw	LzSz	Kfz
Fahrleistung	Tsd. FZkm/a	-20.685,0	845,2	4,4	238,9	-137,1	39,7	-19.693,9
		-2, 2%	2,6%	0,1%	1,9%	-0,6%	0,3%	-1,9%
PM10 Abgas ges.	kg/a	-328,0	24,1	-3,1	7,4	-54,3	0,1	-353,8
		-3,0%	1,5%	-0,5%	2,0%	-1,3%	0,0%	-1,7%
PM10 AWAR2*	kg/a	-1.280,9	-0,6	-15,5	-0,8	-258,8	-118,2	-1.674,8
		-4,4%	-0,1%	-1,4%	-0,2%	-3,8%	-3, 3%	-4,0%
PM10 Gesamt	kg/a	-1.609,0	23,6	-18,6	6,6	-313,1	-118,2	-2.028,6
		-4,0%	0,9%	-1,0%	0,9%	-2,9%	-1,9%	-3,3%

^{*} Aufw irbelung und Abrieb

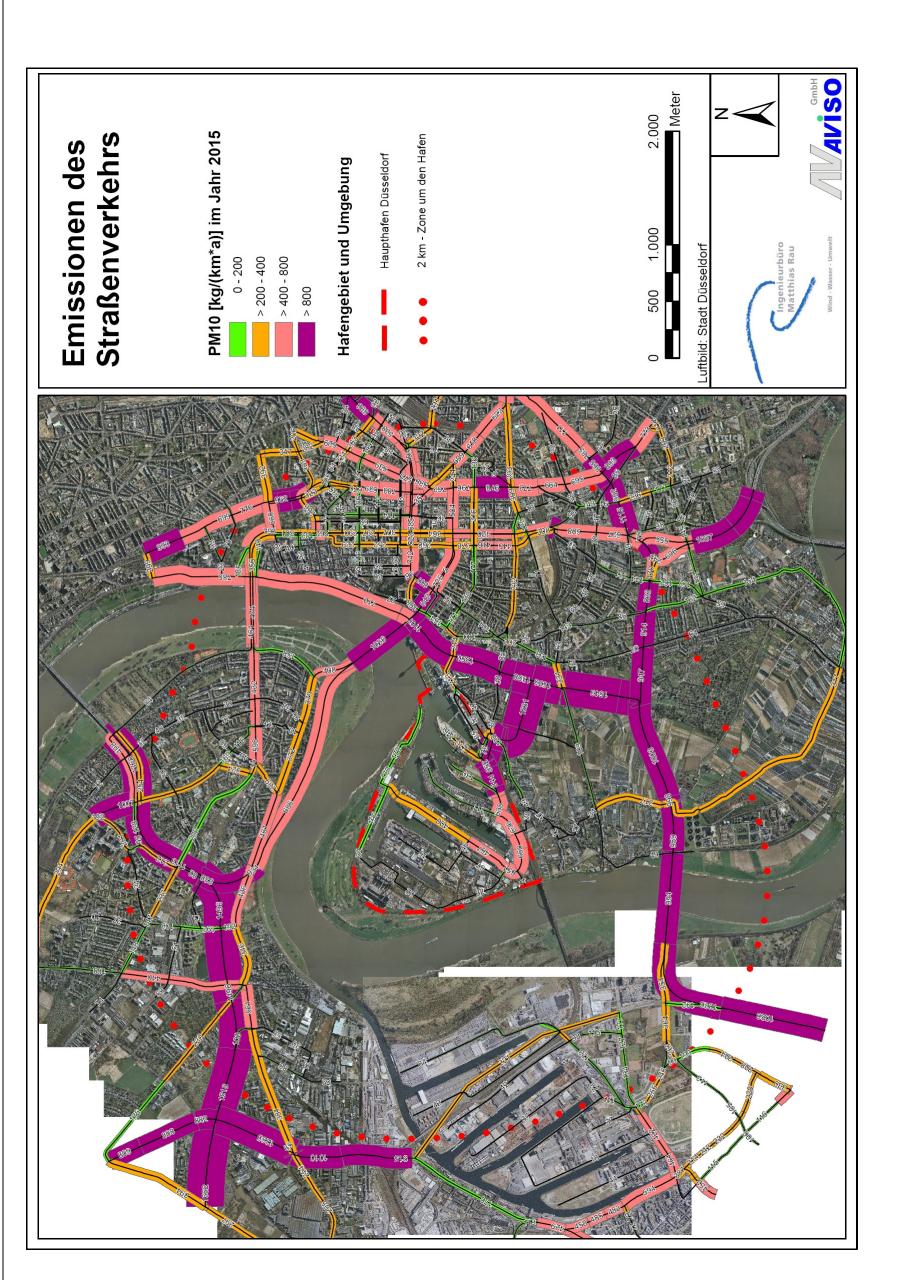


Bild 3.7: Emissionsdichten (kg/km*a) im Untersuchungsgebiet im Jahr 2015 (alle Fahrzeugarten)

3.3 Quellgruppe Schiene

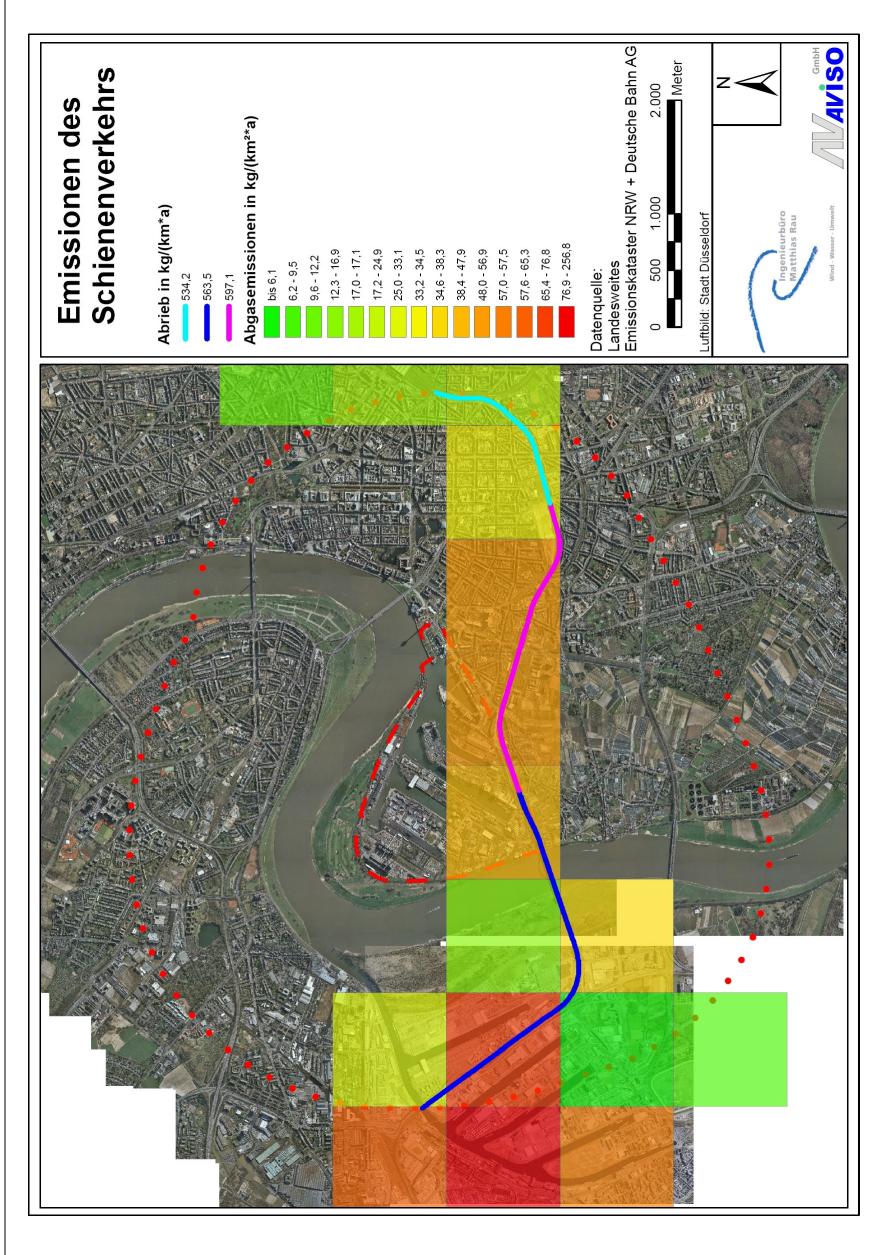
Datengrundlage für die Emissionen durch Schienenverkehr bildeten die Rasterdaten des landesweiten Emissionskatasters Luft NRW (Bezugsjahr 2000), sowie die, in Form von Linienquellen, vorliegenden Daten der Deutschen Bahn AG (Bezugsjahr 2008), die beide vom LANUV NRW bereitgestellt wurden.

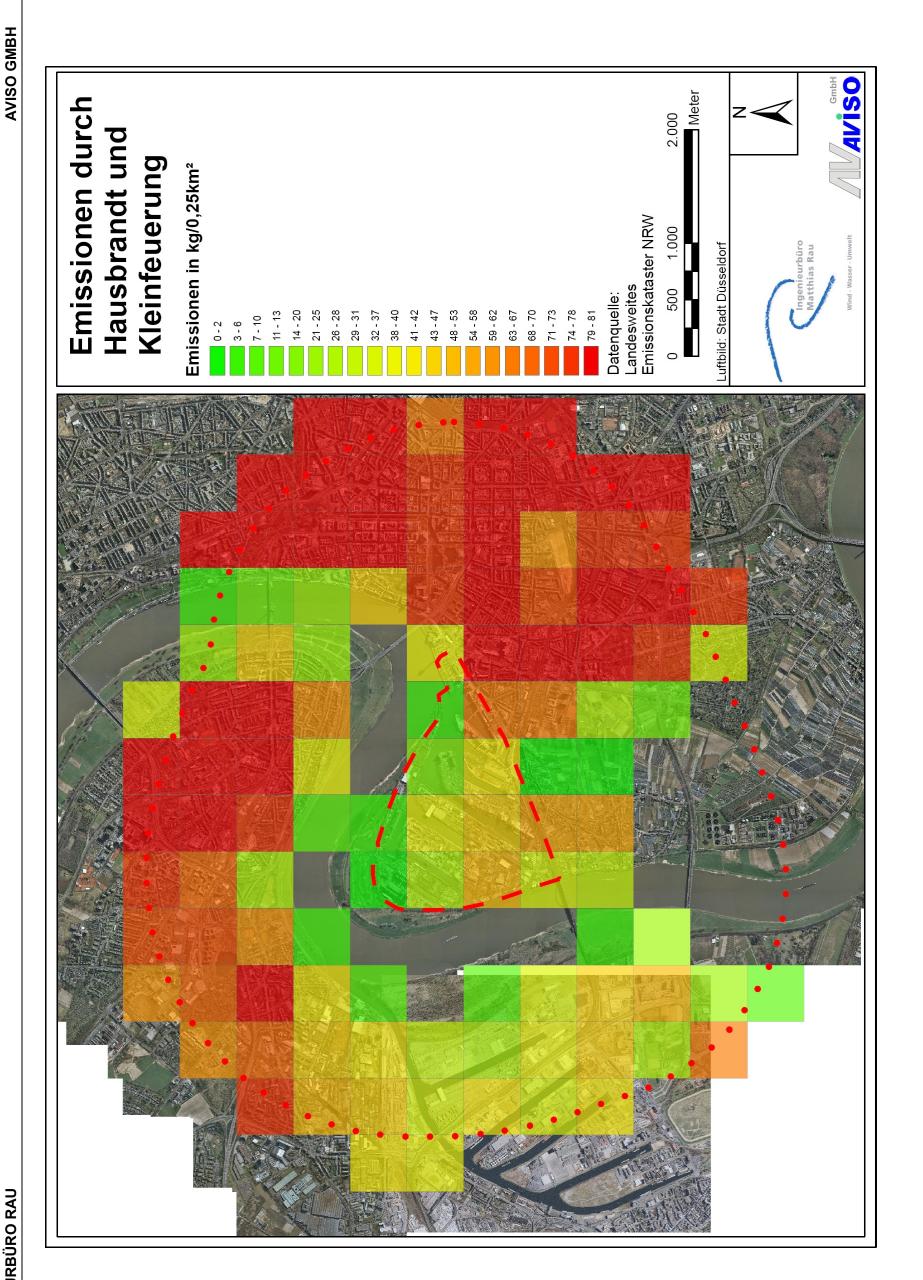
In den Katasterdaten sind die Emissionen in quadratischen Rastern mit 1 km Kantenlänge enthalten. Sie enthalten sowohl die Abgas-Emissionen der DB-Fahrten in dem entsprechenden Raster, als auch die Abgas-Emissionen anderer Bahngesellschaften, nicht aber die durch Abrieb verursachten Emissionen. Die Flächenquellen decken dabei, entsprechend dem Gleisverlauf, nur die Gebiete mit relevanten Schienen-Emissionen ab. Die größten Emissionen treten dabei westlich des Neusser Hafens im Gebiet um den Neusser Hauptbahnhof auf (siehe Bild 3.8). Die Emissionswerte betragen hier bis zu 257 kg/a*km². Die Emissionsdichten der den Düsseldorfer Hafen (teilweise) abdeckenden Rasterzellen betragen dagegen nur 48 kg/a*km² (westliche Zelle) und 57 kg/a*km² (östliche Zelle).

Die Daten der Deutschen Bahn AG enthalten zwar nur die Fahrten der Deutschen Bahn, dafür aber auch die Emissionen aus dem Abrieb (Fahrdrahtabrieb, Graugussabrieb, Scheibenbremsenabrieb, Schienenabrieb, Radabrieb).

Um auch die Abgasemissionen der nicht zur DB zählenden Bahngesellschaften erfassen zu können, wurden hier beide Datensätze in Kombination verwendet. Die Rasterdaten des landesweiten Katasters wurden im Bereich des Untersuchungsgebietes in ihrer Form vollständig verwendet. Die DB-Daten wurden nur zur Ausweisung der Abrieb-Emissionen verwendet, da die Abgas-Emissionen der DB-Fahrten schon in den Raster-Daten enthalten sind.

Insgesamt werden somit im Gebiet Hafen + Umgebung 811 kg an motorbedingten PM10-Emissionen und 4.434 kg an Abrieb-Emissionen pro Jahr freigesetzt.




Bild 3.8: Emissionen durch Schienenverkehr (in kg/(km²*Jahr)) im Untersuchungsgebiet und seiner Umgebung

3.4 Quellgruppe Schiff

Die vom LANUV NRW bereitgestellten Daten des landesweiten Emissionskatasters (Bezugsjahr 2004) bestehen bzgl. des Schiffsverkehrs aus Linienquellen, die die Emissionen für die Wasserstraße Rhein und die beiden Haupthäfen in Düsseldorf und Neuss enthalten. Lage und Stärke der Emissionen sind in Bild 3.9 dargestellt. Die Emissionsdichten auf dem Rhein betragen zwischen 1.600 kg/(km*a) und 1.700 kg/(km*a). In den Häfen sind die Emissionen mit maximal 32 kg/(km*a) (Neuss) bzw. 13 kg/(km*a) (Düsseldorf) sehr viel geringer. Dabei werden Emissionsdichten größer 10 kg/(km*a) im Düsseldorfer Hafen nur nahe der Hafenein- bzw. Hafenausfahrt verzeichnet. In den Hafenbecken selbst liegen die Werte knapp unter 2 kg/(km*a).

Im Hafenbecken Düsseldorf werden pro Jahr insgesamt knapp 18 kg PM10 emittiert, auf dem umliegenden Rhein und im Neusser Hafen über 14.700 kg pro Jahr.

INGENIEURBÜRO RAU

Emissionen durch Schiffsverkehr (in kg/(km*a)) im Untersuchungsgebiet und seiner Umgebung Bild 3.9:

3.5 Quellgruppe Hausbrand und Kleinfeuerung

Zur Ermittlung der Emissionen aus nicht-genehmigungsbedürftigen Feuerungsanlagen (Hausbrand und Kleinfeuerung) wurden ebenfalls die Daten des landesweiten Emissionskatasters NRW (Bezugsjahr 2004) verwendet.

Die Daten liegen in Rastern mit 500 m Kantenlänge vor und enthalten die PM10-Emissionen in kg pro Jahr und Rasterfläche (0,25 km²). Das Kataster enthält analog zum Kataster des Schienenverkehrs nur dort Emissionswerte bzw. Rasterflächen, wo auch (relevante) Schadstoffmengen emittiert werden. So befinden sich entlang des Rheins und seiner Ufer einige "Lücken", in denen keine Emissionen vom Kataster ausgewiesen werden.

Die insgesamt durch diese Quellgruppe emittierte Staubmenge pro Jahr beträgt im Hafen 507 kg und in der Umgebung 5.318 kg. Eine graphische Darstellung dieser Emissionen befindet sich in Bild 3.110.

Da die Quellhöhen nicht angegeben sind, wurde für das Hafengebiet Düsseldorf die jeweils mittlere Gebäudehöhe aller Gebäude, die sich in einem Raster befinden, gewählt. Für die Umgebung (Neuss, Düsseldorf Stadtgebiet) waren die Gebäudehöhen nicht bekannt. Hier wurden schräg aufgenommene Luftbilder zur Erfassung der Geschosshöhen in den umliegenden Wohngebieten verwendet und aufgrund dieser von einer durchschnittlichen Gebäudehöhe von 15 m ausgegangen.

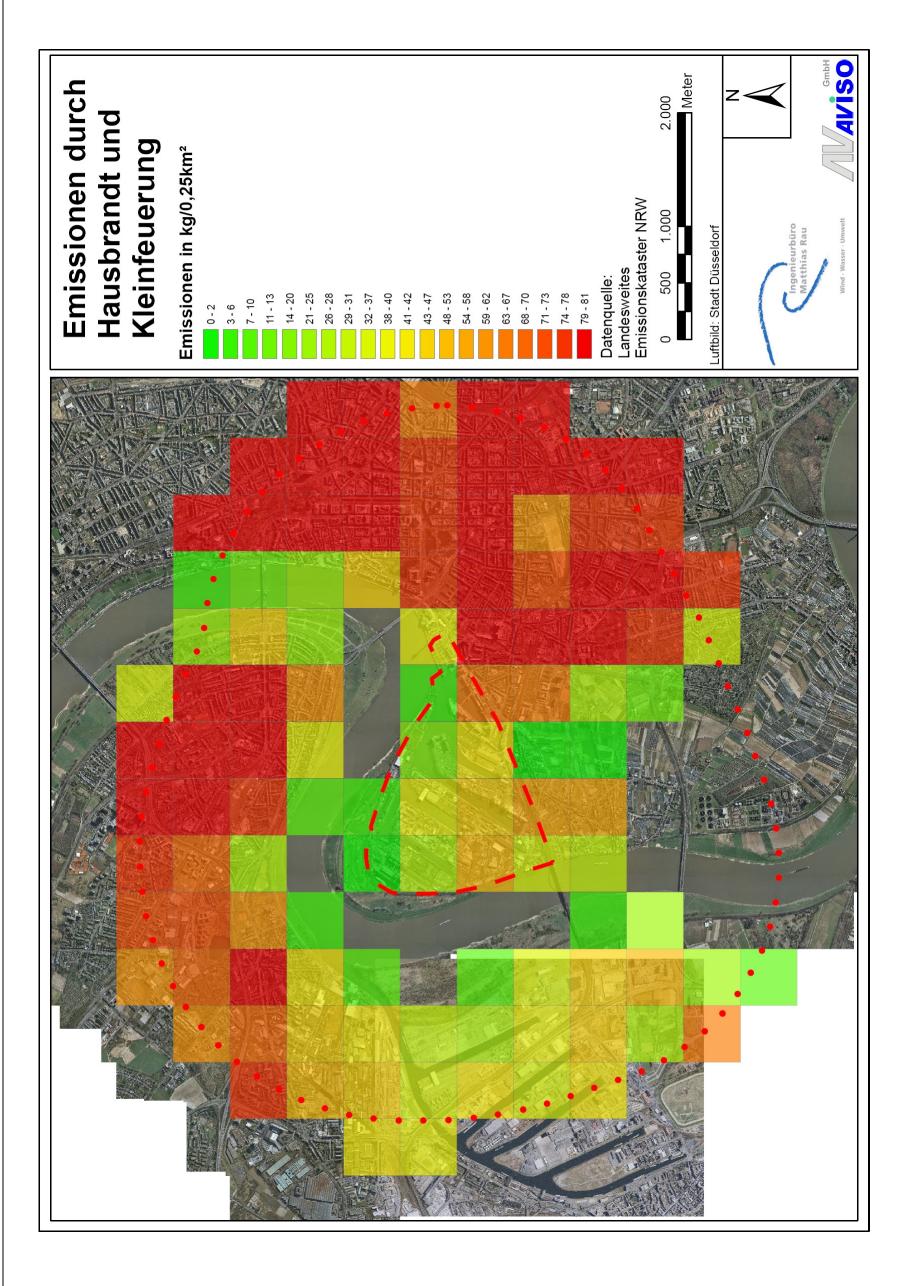


Bild 3.10: Emissionen durch Hausbrand und Kleinfeuerungsanlagen im Untersuchungsgebiet und seiner Umgebung

3.6 Abschätzung der PM2,5-Emissionen

Der Deutsche Bundestag hat am 25. Februar 2010 dem Entwurf der Bundesregierung zur Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39. BImSchV) zugestimmt. Die Veröffentlichung ist für Juli 2010 geplant. Mit der 39. BImSchV erfolgt die Umsetzung der EU-Luftqualitätsrichtlinie 2008/50/EG vom 11.06.2008 (Veröffentlichung) in deutsches Recht. Zu den wichtigsten Neuerungen gehört die Festlegung von Immissions-grenzwerten für PM2,5 (Feinststaub). Durch diese rechtlichen Rahmenbedingungen und die zunehmenden Erkenntnisse über die Gesundheitsgefährdung durch Feinstäube gerät dieser immer weiter in den Fokus von Luftqualitätsuntersuchungen. Aus diesem Grund sollten die PM2,5-Emission und –Immission auch im Rahmen dieser Untersuchung abgeschätzt werden.

Für die Abschätzung der PM2,5-Emissionen wurde der mittlere PM2,5-Anteil an den PM10-Emissionen für jede Quellgruppe und Emissionsart bestimmt. Die Abschätzung erfolgte dabei auf der Basis unterschiedlicher Literaturquellen oder vorhandener Daten. Für die industriellen Emissionen aus gefassten Quellen (Schornsteine, Deflektoren) wurde der PM2,5-Anteil ebenfalls aus den Emissionserklärungen abgeleitet. Er beträgt im Düsseldorfer Hafen 48% und außerhalb davon 61%. Für die diffusen Emissionen, durch z. B. Abwehung, wurde sich analog zum PM10-Anteil auf die Veröffentlichungen der US EPA bezogen /EPA 2006/. Demnach beträgt der PM2,5-Anteil am Gesamtstaub 7,5%, wodurch sich ein Verhältnis von PM2,5 zu PM10 von 15% ergibt. Für den Straßenverkehr wurde der PM2,5-Anteil aus mit roadTEIM berechneten Daten abgeleitet, er beträgt durchschnittlich 44% am PM10. Für Hausbrand und Kleinfeuerung gibt eine Studie des Umweltbundesamtes /UBA 2008/ ein durchschnittliches PM2,5/PM10-Verhältnis von 94% an. Am PM10-Abrieb des Schienenverkehrs beträgt der PM2,5-Anteil nach /BUWAL 2003/ 20%. Die bei der Verbrennung von Diesel in Lokomotiven- und Schiffsmotoren entstehenden Feinstäube sind (wie bei KFZ-Abgas) sehr fein und gehören deshalb auch zu 100% der PM2,5-Fraktion an.

Eine Zusammenfassung der ermittelten PM2,5-Anteile gibt Tab. 3.9.

Tab. 3.9: PM2,5-Anteil an den PM10-Emissionen für verschiedene Quellgruppen bzw. Emissionsarten

Quellgruppe/Emissionsart	PM2,5/PM10
Industrie, gefasste Quellen	
- Düsseldorf-Hafen	48%
- Umgebung	61%
Industrie, diffuse Emissionen	15%
Straßenverkehr	44%
Schienenverkehr, Abgas	100%
Schienenverkehr, Abrieb	20%
Schiff, Abgas	100%
Hausbrand und Kleinfeuerung	94%

3.7 Zusammenfassung

In Tab. 3..10 und Tab. 3..11 sind die PM10-Emissionen aller Emittentengruppen für die verschiedenen Rechenszenarien gegenübergestellt.

In den Szenarien I bis III stellen die emissionserklärungspflichtigen Betriebe sowohl auf das Gesamtgebiet bezogen als auch im Düsseldorfer Hafen die größte Emissionsquelle dar. Die Reduzierung der Emissionen dieser Betriebe in den Szenarien III und IV führt zu deutlichen Abnahmen der PM-Gesamtemissionen im gesamten Gebiet und sogar zu Verminderungen um mehr als die Hälfte im Düsseldorfer Hafen selbst. In Szenario IV werden die emissionserklärungspflichtigen Betriebe dadurch sogar von den nicht-emissionserklärungspflichtigen Betrieben als Hauptemittent im Hafen (s. Tab. 3.11) abgelöst.

Tab. 3.10: Zusammenfassende Darstellung der PM10-Emissionen im gesamten betrachteten Gebiet

	Szenario II	Szenario I	Szenario III	Szenario IV
Industrie,	164,3 t/a	164,3 t/a	147,1 t/a	128,5 t/a
emissionserklärungspflichtig	60,3%	60,7%	58,1%	54,8%
Industrie,	20,7 t/a*	20,7 t/a*	20,7 t/a*	20,7 t/a*
nicht-emissionserklärungspflichtig	7,6%	7,7%	8,2%	8,8%
Straßenverkehr	62,3 t/a	60,3 t/a	60,3 t/a	60,3 t/a
	22,9%	22,3%	23,8%	25,7%
Schiene	5,2 t/a	5,2 t/a	5,2 t/a	5,2 t/a
	1,9%	1,9%	2,1%	2,2%
Schiff	14,7 t/a	14,7 t/a	14,7 t/a	14,7 t/a
	5,4%	5,4%	5,8%	6,3%
Hausbrand und Kleinfeuerung	5,3 t/a	5,3 t/a	5,3 t/a	5,3 t/a
	1,9%	2,0%	2,1%	2,3%
Gesamt	272,5 t/a*	270,5 t/a*	253,3 t/a*	234,7 t/a*
	100%	100%	100%	100%

^{*} die Emissionen der nicht-emissionserklärungspflichtigen Anlagen sind nur für den Düsseldorfer Hafen abgeschätzt worden und dementsprechend für das Gesamtgebiet nicht bekannt; die Emissionen nicht-emissionserklärungspflichtiger Anlagen außerhalb des Düsseldorfer Haupthafens fehlen auch in der Gesamtabschätzung

Der Straßenverkehr hat im Düsseldorfer Hafen aufgrund der geringen Verkehrsmengen und der hohen industriellen Emissionen eine untergeordnete Rolle. Im Gesamtgebiet dagegen ist der Straßenverkehr mit ca. einem Viertel der gesamten PM10-Emissionen der zweitgrößte Emittent.

Schienen-, Schiffsverkehr und Kleingewerbe sind vor allem im Düsseldorfer Hafen von geringer Relevanz. Grund sind der geringe Schiffs- und Bahnverkehr im Vergleich zu den umgebenden Wasserstraßen (Rhein) und Bahnstrecken (Verbindung Düsseldorf – Neuss), sowie die geringe Versorgung mit kleineren Heizungsanlagen, wie sie sich in größerer Dichte wohl eher in wohnbaulich geprägten Stadtteilen finden lassen.

Insgesamt werden im Hafen zwischen 14,4% (Szenario IV) und 25,7% (Szenario I) der Gesamtemissionen des untersuchten Gebietes freigesetzt.

Tab. 3.11: Zusammenfassende Darstellung der PM10-Emissionen im Düsseldorfer Hafen

	Szenario II	Szenario I	Szenario III	Szenario IV
Industrie,	45,8 t/a	45,8 t/a	28,6 t/a	10,0 t/a
emissionserklärungspflichtig	66,4%	65,8%	54,6%	29,6%
Industrie,	20,7 t/a	20,7 t/a	20,7 t/a	20,7 t/a
nicht-emissionserklärungspflichtig	30,0%	28,9%	39,5%	61,2%
Straßenverkehr	1,9 t/a	2,5 t/a	2,5 t/a	2,5 t/a
	2,8%	3,6%	4,8%	7,4%
Schiene	0,1 t/a	0,1 t/a	0,1 t/a	0,1 t/a
	0,1%	0,1%	0,2%	0,3%
Schiff	0,02 t/a	0,02 t/a	0,02 t/a	0,02 t/a
	0,03%	0,03%	0,04%	0,06%
Hausbrand und Kleinfeuerung	0,5 t/a	0,5 t/a	0,5 t/a	0,5 t/a
	0,7%	0,7%	1,0%	1,5%
gesamt	69,0 t/a	69,6 t/a	52,4 t/a	33,8 t/a
	100%	100%	100%	100%

4 BESTIMMUNG DER IMMISSIONSVERHÄLTNISSE

4.1 Vorgehensweise bei der großräumigen Immissionsberechnung

4.1.1 Das Strömungs- und Ausbreitungsmodell Lasat

Für die Berechnung der durch die Emissionsquellen außerhalb des Düsseldorfer Hafengebietes im Bereich des Düsseldorfer Hafens verursachten Immissionskonzentrationen wurde das Ausbreitungsmodell LASAT verwendet. LASAT ist im Kern vergleichbar mit dem offiziellen Ausbreitungsmodell AUSTAL2000 der /TA Luft 2002/, verfügt jedoch über etwas mehr Möglichkeiten bzgl. der Variation der Eingangsparameter. Das Ausbreitungsmodell ist ein so genanntes Partikelmodell. Es simuliert die Verteilung und den Transport von Tracerpartikeln mit Hilfe eines zufallsverteilten Transportwegansatzes (Lagrange-Simulation).

Beliebige viele Quellen können als Linien-, Flächen-, Punkt- oder Volumenquellen definiert werden. Als Ergebnis der Ausbreitungsberechnungen erhält man ein dreidimensionales Konzentrationsfeld für die emittierten Luftschadstoffe, gemittelt über unterschiedliche Zeitintervalle.

Dem Ausbreitungsmodell können unterschiedliche Windfeldmodelle vorgeschaltet werden, die je nach Komplexität der Topographie des Untersuchungsgebietes gewählt werden.

In den folgenden Kapiteln werden die den Ausbreitungsberechnungen zu Grunde gelegten Eingangsdaten beschrieben.

4.1.2 Festlegung der Emissionen

In Kapitel 3 wurde die Aufbereitung der Emissionen aller beschriebenen Quellengruppen innerhalb des betrachteten großräumigen Untersuchungsgebietes beschrieben. Die für die Berechnung mit LASAT maßgeblichen Emissionen wurden in einem Emissionskataster als Eingangsdatensatz für die Immissionsberechnungen abgelegt.

Die Emissionen der einzelnen Quellgruppen wurden unterschiedlich in dem Ausbreitungsmodell definiert. Die bodennah freigesetzten Emissionen des Straßenverkehrs, des Schiffsverkehrs sowie des Abriebs Schienenverkehr wurden als Linienquellen ausgewiesen. Die
Emissionen der Quellengruppe Hausbrand/Kleinfeuerung wurden als Flächenquellen (qkmRaster) vorgegeben, ebenso der Abgasanteil des Schienenverkehrs. Die Emissionsquellen
Industrie/Gewerbe wurden entweder als Punktquellen oder aber als Flächenquellen mit den
realen Flächengrößen definiert.

4.1.3 Festlegung der Randbedingungen

Das LASAT-Modellgebiet wurde auf Basis der GlobDEM50-Daten (2.0) erstellt. Es handelt sich hierbei um digitale Höhendaten in einem 50 m Raster. Die südwestliche Ecke des Modellgebiets ist gleichzeitig auch der Bezugspunkt und liegt bei GK-Ost 2 547 000 m und GK-Nord 5 672 000 m. Das Modellgebiet hat eine Ausdehnung von 10.000 m in West-Ost- und 8.000 m in Süd-Nordrichtung. Die Gitterweite liegt bei 50 m horizontal und entspricht vertikal dem AUSTAL2000-Standard (Schichthöhen über Grund: 0.0 3.0 6.0 10.0 16.0 25.0 40.0 65.0 100.0 150.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 1000.0 1200.0 1500.0 m). Die Anzahl Gitterpunkte beträgt 200 x 160 x 21.

4.1.4 Meteorologische Daten

Für die Ausbreitungsberechnung sollten meteorologische Daten herangezogen werden, die für das Untersuchungsgebiet repräsentativ sind. Grundsätzlich besteht die Möglichkeit, meteorologische Daten auf der Basis einer mittleren mehrjährigen Häufigkeitsverteilung oder auf der Basis einer repräsentativen Jahreszeitreihe von Windrichtung, Windgeschwindigkeit und Ausbreitungsklasse zu berücksichtigen. Im vorliegenden Fall wurde die Ausbreitungsrechnung auf Basis einer mehrjährigen Häufigkeitsverteilung von Ausbreitungssituationen durchgeführt; sie liefert die Jahresmittelwerte des hier betrachteten Stoffes PM10. Als Statistik wurde eine synthetische Ausbreitungsklassenstatistik (AKS) für einen zentralen Punkt im Bereich des Düsseldorfer Hafengebietes mit den Gauß-Krüger-Koordinaten 2 552 000 / 5 676 000 gewählt. Die synthetischen AKS werden derzeit von der ARGE IB Rau/METCON Zug um Zug flächendeckend für das gesamte Bundesland Nordrhein-Westfalen in einem Raster von 500 m x 500 m ermittelt. Als Anemometerhöhe wird von der synthetischen AKS die Höhe 13 m vorgegeben. Mit dem LASAT-Preprozessor Lprs2z wurde die AKS in eine so genannte äquivalente Wetterzeitreihe konvertiert. Dabei wurden die Vorschriften der TA Luft z.B. hinsichtlich der Windrichtungssektorenaufteilung beachtet. Bild 4.1 zeigt die Häufigkeit der Windrichtungen und Windgeschwindigkeiten für die synthetische Windstatistik, die für die Berechnungen verwendet wurde. Die Windrichtungsverteilung zeigt den für Düsseldorf charakteristischen Verlauf mit dem Maximum für Winde aus südöstlicher Richtung und dem Sekundärmaximum für südwestliche Windrichtungen.

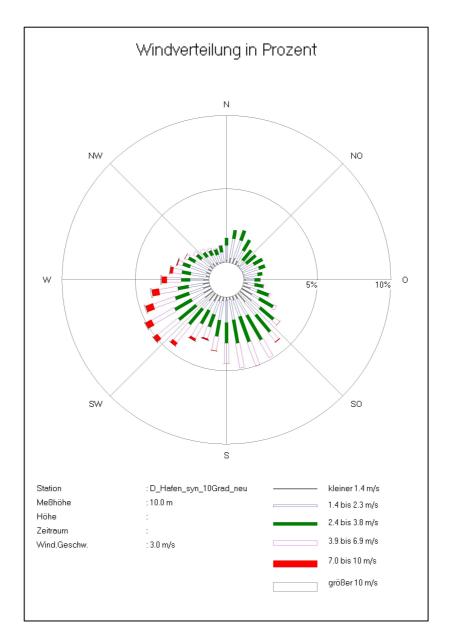


Bild 4.1: Synthetische Windstatistik für das Düsseldorfer Hafengebiet

4.1.5 Bebauung und Gelände

Das Gelände in der Umgebung des Düsseldorfer Hafens ist nur leicht topographisch gegliedert. Der Geländeeinfluss auf die Windfelder wurde somit mit dem in LASAT implementierten diagnostischen Windfeldmodell erfasst.

Neben großräumig wirkenden Topographieeinflüssen beeinflussen kleinräumig Gebäudeeinflüsse die Strömung und Ausbreitung. Im vorliegenden Fall wird eine großräumige immissionsseitige Betrachtung mit einer Auflösung von 50 m x 50 m durchgeführt. Bei dieser Auflösung werden die Gebäude nicht als einzelne Hindernisse aufgelöst, sondern als Rauigkeit

berücksichtigt. Die mittlere Rauigkeitslänge im Untersuchungsgebiet wurde mit 0,5 m festgelegt.

4.2 Mikroskalige Immissionsberechnungen für den Düsseldorfer Hafen

4.2.1 Das Strömungs- und Ausbreitungsmodell MISKAM

Für die Immissionsberechnungen der PM10-Belastungen im Düsseldorfer Hafengebiet wurde das nichthydrostatische, prognostische Strömungsmodell MISKAM eingesetzt, das am Institut für Physik der Atmosphäre Mainz entwickelt wurde /Eichhorn, 1989/ und mittlerweile in der Version 600 (Feb. 2010) vorliegt. Eine ausführliche Beschreibung des Modells ist in der zitierten Arbeit von Eichhorn gegeben. MISKAM gilt in seiner heutigen Version als Standardmodell und dient für andere Modellentwicklungen als Referenz- und Vergleichsmaßstab. Es handelt sich um ein dreidimensionales Strömungsmodell, das, gekoppelt mit einem entsprechenden Ausbreitungsmodell, die Berechnung der Ausbreitung auch in komplex bebautem Gelände erlaubt.

Das Windfeld wird durch die numerische Lösung der Erhaltungsgleichungen für Impuls, Masse und Energie berechnet. Einzelne Gebäude und Hindernisse können somit explizit in ihrer Form aufgelöst werden. Als Turbulenzmodell wird ein Standard-k,ε-Modell eingesetzt.

Vergleiche mit Messergebnissen aus Windkanälen zeigen, dass die Um- und Überströmung von Gebäuden und Gebäudekomplexen, die Ausbildung von Rückströmzonen, der Frontwirbelbereich etc. mit MISKAM realistisch abgebildet werden können /Röckle et al., 1995//Rau, 2000/.

Der Vergleich von Immissionsmessungen in bebauten Gebieten mit den mit MISKAM gerechneten Immissionskonzentrationen zeigt eine gute Übereinstimmung /Zenger et al., 2001/.

4.2.2 Modellvorgaben

Für das zu betrachtende Düsseldorfer Hafengebiet wurde ein Untersuchungsgebiet mit einer Ausdehnung von ca. 1890 m in Ost-West-Richtung und ca. 1850 m in Nord-Süd-Richtung festgelegt.

Das Rechengebiet hat eine horizontale Gitterauflösung von 4,5 m. Bei der Auflösung musste ein Kompromiss zwischen maximal möglicher Anzahl von Gitterpunkten, Gebietsgröße und ausreichender Auflösung von Hindernissen getroffen werden. In der Vertikalen wurde bis in 5 m Höhe eine Gittermaschenweite von 1,0 m gewählt. Von dieser Höhe an erfolgt bis zum oberen Modellrand, der mit etwa der 4-fachen Höhe des höchsten Gebäudes im Modellgebiet festgesetzt wurde, um eine Beeinflussung des Modelloberrandes durch das höchste Gebäude des Untersuchungsgebietes auszuschließen, eine kontinuierliche Spreizung des Gitters entsprechend der Vorgaben der /VDI 3783, Blatt 9/. Die für die Modellrechnungen benö-

tigten Gebäudestrukturen wurden von der Stadt Düsseldorf zur Verfügung gestellten Planunterlagen und Luftbildaufnahmen entnommen. Für die Gebäudehöhen wurden digitale Daten des Lärmmodells zur Verfügung gestellt. Bei der Bearbeitung zeigte es sich, dass diese Höhendaten in vielen Fällen in Widerspruch zu den tatsächlich vorhandenen Gebäudehöhen stehen. Auf Basis von 3-d-Luftbildaufnahmen wurden die Gebäudehöhen nachbearbeitet.

Es wurden zwei Bebauungszustände untersucht, und zwar der heutige Istzustand (Bebauungsstand Ende 2009) sowie der Planzustand mit Umsetzung der zukünftig geplanten Bebauung in der Kesselstraße und der Speditionstraße, entsprechend den B-Plänen.

Die Bebauung des Istzustandes ist gleichzeitig bebauungsseitig die Basis für das Emissions-Szenarium II, die Bebauung des Planzustandes für die Emissions-Szenarien I, III und IV.

Das MISKAM-Rechengebiet ist in dem Lageplan (Bild 4.1) rot umrandet dargestellt.

Innerhalb des Düsseldorfer Hafens wurden die Kfz-Emissionen und die Schiffsemissionen als horizontale bodennahe Linienquellen mit einer Emissionsfreisetzung von 1,5 m Höhe definiert. Die Emissionen der Punktquellen der emissionserklärungspflichtigen Betriebe wurden bzgl. der Freisetzungshöhe und Ausdehnung entsprechend der Vorgaben in den Emissionserklärungen festgelegt. Die Quellen der nicht emissionserklärungspflichtigen Betriebe im Düsseldorfer Hafen wurden auf Basis von Angaben der Betriebe selbst bzw. auf Basis von Luftbildaufnahmen z.T. als bodennahe Flächenquellen (Halden, Lagerflächen), teils als Punktquellen (Abluftführungen etc.) festgelegt.

4.2.3 Umfang der Berechnungen

Die Berechnung der mikroskaligen Immissionsbelastung wurde für 36 Windrichtungen (10°-Schritte) bei einer Referenzgeschwindigkeit durchgeführt. Die Konzentrationswerte bei anderen Windgeschwindigkeiten lassen sich unter der Annahme berechnen, dass sie in erster Nährung umgekehrt proportional zur Windgeschwindigkeit sind.

4.2.4 Windstatistik

Für die Bestimmung der Jahresmittelwerte der PM10-Zusatzbelastung im Düsseldorfer Hafen wird eine für das Untersuchungsgebiet repräsentative Windstatistik mit den Parametern Windrichtung und Windgeschwindigkeit benötigt. Durch Gewichtung der für jede Anströmrichtung und Windgeschwindigkeitsklasse bestimmten Immissionskonzentrationsfelder gemäß der prozentualen Häufigkeit der entsprechenden Ausbreitungssituation, die in der Windstatistik durch Angabe der Windrichtung und der Windgeschwindigkeit gegeben ist, werden die Jahresmittelwerte bestimmt.

Für den vorliegenden Fall wurde die bereits in 4.1.3 beschriebene synthetische AKS verwendet.

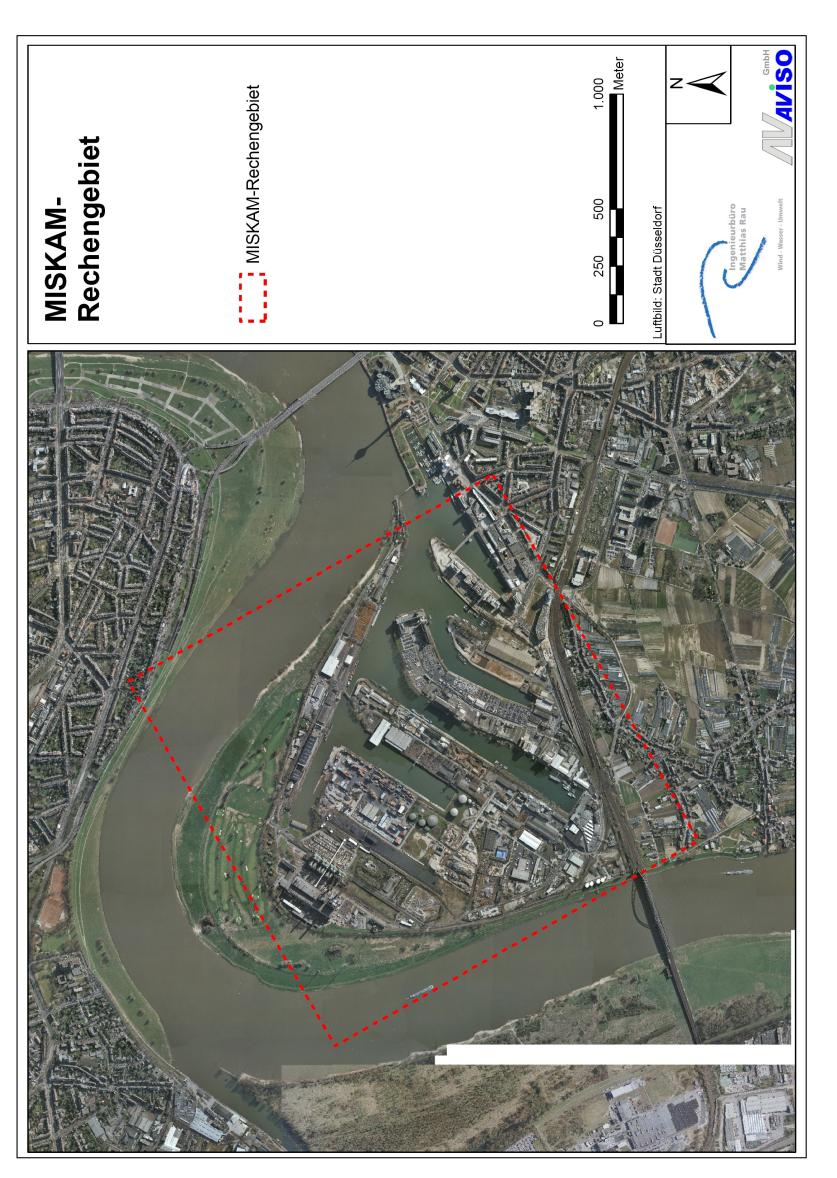


Bild 4.1: MISKAM-Rechengebiet im Bereich des Düsseldorfer Hafens

4.3 Bestimmung der Gesamtbelastung

Die Berechnungen mit MISKAM (s. Kapitel 4.2) liefern als Ergebnis die PM10-Zusatzbelastung innerhalb des Düsseldorfer Hafengebietes durch die Emittenten im Hafengebiet. Die Berechnungen mit LASAT (s. Kapitel 4.1) liefern die Immissionsbelastung, die durch die das Hafengebiet umschließenden Quellen im Hafengebiet verursacht werden. Diese Werte entsprechen der städtischen Hintergrundbelastung. Um die Gesamtbelastung zu erhalten, ist die Zusatzbelastung sowie die städtische Hintergrundbelastung mit der großräumigen regionalen Hintergrundbelastung zu überlagern. Diese wird im Folgenden aus Messungen des Luftmessnetzes sowie aus großräumigen Modellrechnungen mit dem Modell EURAD abgeleitet.

An den als typische regionale Hintergrundstationen eingestuften LANUV-Meßstationen Aachen-Burscheid, Hattingen-Blankenstein, Köln-Rodenkirchen, Schwerter-Holzener Weg, Siegen Haardter Berg, Soest-Ost und Wuppertal-Langerfeld wurden für das Jahr 2009 PM10-Jahresmittelwerte zwischen 19 μ g/m³ und 22 μ g/m³ gemessen. In dem Luftreinhalteplan für Düsseldorf (Rechtskraft am 01.11.2008) wird das regionale Hintergrundniveau für das Jahr 2008 mit 20 μ g/m³ eingeschätzt. Großräumige EURAD-Berechnungen weisen für den regionalen PM10-Hintergrund für den Großraum Köln beispielsweise Werte um etwa 19 μ g/m³ aus. Für die vorliegende Untersuchung wird auf Basis dieser Werte für den regionalen Hintergrund ein Wert von 20 μ g/m³ im Jahresmittel angesetzt. Dieser Wert wird im Sinne einer konservativen Schätzung auch für die Planszenarien gewählt.

5 Ergebnisse der Immissionsberechnung

5.1 Beurteilungsmaßstäbe

Für die Beurteilung der Immissionsbelastung infolge der Emissionen im Untersuchungsgebiet werden die PM10-Grenzwerte der 22. BImSchV bzw. der 39.BImSchV herangezogen (mit Inkrafttreten der 39. BImSchV wird die 22. BImSchV abgelöst). Sie sind in Tab. 5.1 zusammengestellt.

Tab. 5.1: Immissionswerte zum Schutz der menschlichen Gesundheit nach 22./ 39. BImSchV

Luftschadstoff	Konzentration	Mittelungszeitraum	Zulässige Anzahl von Überschreitungen [Anzahl Tage/Jahr]
Schwebstaub (PM10)	40 [μg/m³]	Kalenderjahr	-
	50 [μg/m³]	24 Stunden	35

5.2 Ergebnisse der Immissionsberechnungen für den städtischen Hintergrund

In den Bildern 5.1 bis 5.5 (ab Seite 47) sind, getrennt für die einzelnen untersuchten Quellgruppen, die mit LASAT flächig berechneten Immissionskonzentrationen für Feinstaub (PM10) für eine Immissionshöhe von 1,5 m über dem Boden dargestellt. Zur Orientierung ist das Luftbild hinterlegt. Charakteristisch und gut zu erkennen ist die Rheinschleife, die das Gebiet des Düsseldorfer Hafens im Westen, Norden und Osten umschließt.

Dargestellt ist das gesamte für LASAT gewählte Rechengebiet. Die Skalen in den einzelnen Abbildungen sind unterschiedlich gewählt, um die Höhe der Immissionskonzentrationen besser differenzieren zu können.

In Bild 5.1 sind die Ergebnisse für die Quellgruppe Industrie dargestellt. In dieser Abbildung entsprechen 100% genau dem Grenzwert für das Jahresmittel von 40 µg/m³ (s. Tab. 5.1).

Das Gros der PM10-Quellen der Quellgruppe "Industrie" außerhalb des Düsseldorfer Hafens ist im Neusser Hafen angesiedelt. Die durch die umliegenden Industriequellen im Bereich des Düsseldorfer Hafens verursachten bodennahen Immissionskonzentrationen liegen im westlichen Bereich bei maximal 3% des Grenzwertes von 40 μ g/m³, also in etwa bei 1,2 μ g/m³.

Die Auswirkungen des außerhalb des Düsseldorfer Hafengebietes verlaufenden Straßenverkehrs zeigt Bild 5.2. Die im Düsseldorfer Hafengebiet induzierten bodennahen Immissions-

konzentrationen liegen im östlichen Teil bei maximal 0,3 bis 0,5% (entsprechend 0,12 bis $0,2~\mu g/m^3$).

Die Schiffsemissionen außerhalb des Düsseldorfer Hafengebietes (s. Bild 5.3) (Fahrten auf dem Rhein sowie im Neusser Hafengebiet) erzeugen im Bereich des Düsseldorfer Hafengebietes in Rheinnähe bis maximal 100% des Bezugswertes von – in diesem Fall – 1% des PM10-Grenzwertes, gleichbedeutend mit einer maximalen bodennahen PM10-Belastung von etwa $0.4~\mu g/m^3$.

In Bild 5.4 sind die durch den Schienenverkehr verursachten Immissionskonzentrationen dargestellt. Wie bereits in Kapitel 3 ausführlich beschrieben wurde, war die Datenlage der Schienenemissionen heterogen. Die Abgasemissionen für den DB-Verkehr als auch für andere Bahngesellschaften lagen nur als Rasterwerte vor. Lediglich für die DB-Strecken innerhalb des Gesamtgebietes waren Abriebsdaten als Linienemissionen gegeben. Bei dem Schienenverkehr wurden aus Gründen der Vereinfachung die gesamten Emissionen im Rahmen der großräumigen Berechnungen für den Hintergrund berücksichtigt. Bild 5.4 zeigt deutlich die DB-Strecke am südlichen Rande des Düsseldorfer Hafens mit den höchsten Immissionskonzentrationen in unmittelbarer Gleisnähe. Wie beim Schiffsverkehr bezieht sich der 100%-Wert der Skala auf 1% des PM10-Grenzwertes. In der südlichen Hälfte des Düsseldorfer Hafengebietes liegen die durch den Schienenverkehr (Abrieb und Abgas) verursachten Immissionskonzentrationen bei maximal 10-30% des Skalenbezugswertes, entsprechend etwa 0,04 bis 0,12 μ g/m³. Im nördlichen Teil des Düsseldorfer Hafengebietes ist mit einem Beitrag durch den Schienenverkehr in Höhe von maximal 0,04 μ g/m³ zu rechnen.

Bild 5.5 zeigt die Ergebnisse der Immissionsberechnungen für die Quellgruppe Hausbrand und Kleinfeuerung (HuK). Auch hier lagen die Emissionen lediglich in Rasterform (500 m x 500 m) vor. Bei den großräumigen Immissionsberechnungen wurden wie schon für den Schienenverkehr die Quellen innerhalb und außerhalb des Düsseldorfer Hafens im Rahmen der LASAT-Rrechnungen berücksichtigt. Die Skala ist wieder identisch zu der für die Quellgruppen Schiene und Schiff. Die höchsten bodennahen Immissionskonzentrationen werden für das Neusser und Düsseldorfer Hafengebiet berechnet. Dabei liegen die Werte im Düsseldorfer Hafen bei maximal 30% des Bezugswertes von 1% des PM10-Grenzwertes (entsprechend 0,12 μ g/m³), im Neusser Hafen bei maximal 10% des Bezugswertes von 1% des PM10-Grenzwertes (entsprechend 0,04 μ g/m³).

Die Immissionsbelastung durch alle Quellgruppen zeigt das Bild 5.6. Die Quellen außerhalb des Düsseldorfer Hafengebietes (mit den genannten Ausnahmen für die Quellgruppen Schiene und HuK) erzeugen im Bereich des Düsseldorfer Hafengebietes großräumig bodennahe PM10-Konzentrationen von etwa 1 bis 3% des PM10-Grenzwertes von 40 μ g/m³ (entsprechend 0,4 bis 1,2 μ g/m³) mit etwas zunehmender Tendenz in unmittelbarer Rheinnähe, im westliche Randbereich bzw. im Bereich der DB-Gleisanlagen im Süden von 3 bis 5% des PM10-Grenzwertes (entsprechend 1,2 bis 2.0 μ g/m³).

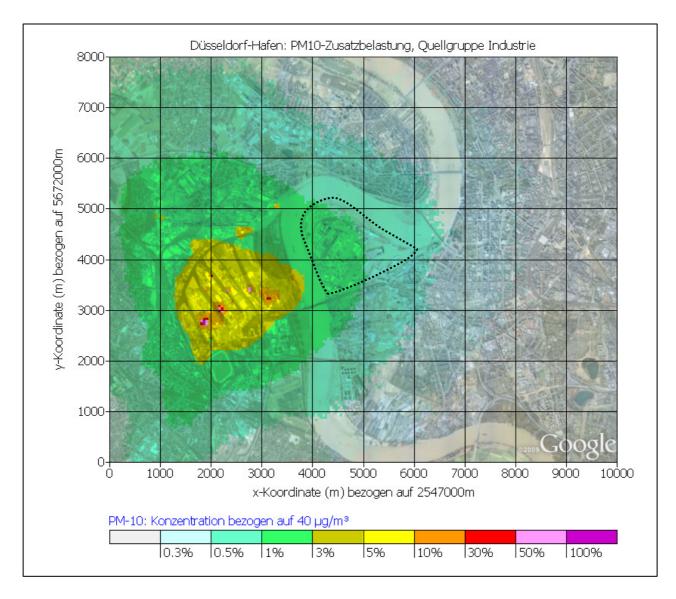


Bild 5.1: Bodennahe PM10-Immissionskonzentrationen durch die Quellgruppe Industrie außerhalb des Düsseldorfer Hafengebietes

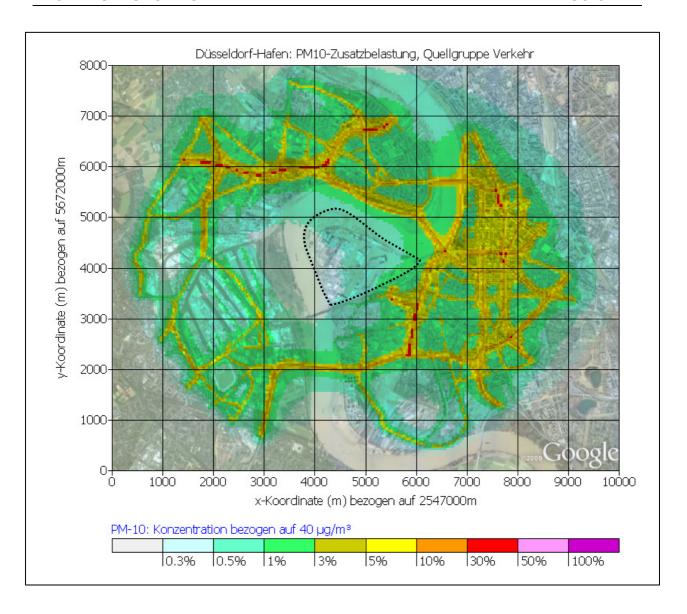


Bild 5.2: Bodennahe PM10-Immissionskonzentrationen durch die Quellgruppe Verkehr außerhalb des Düsseldorfer Hafengebietes

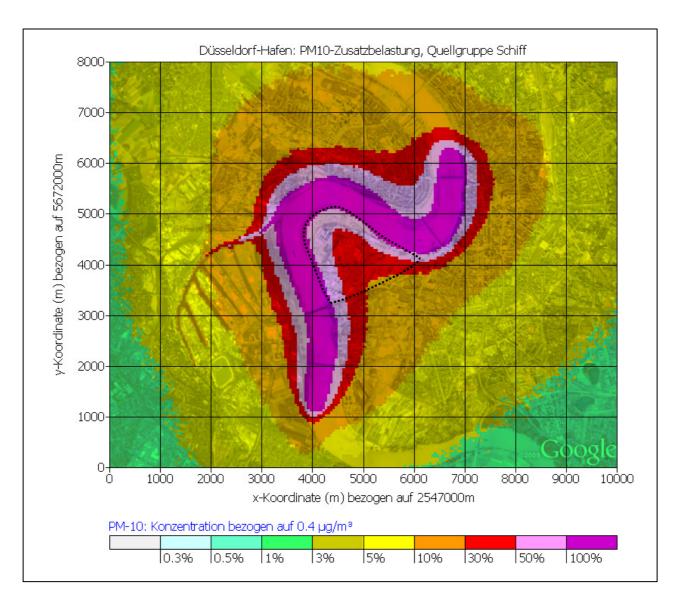


Bild 5.3: Bodennahe PM10-Immissionskonzentrationen durch die Quellgruppe Schiff außerhalb des Düsseldorfer Hafengebietes

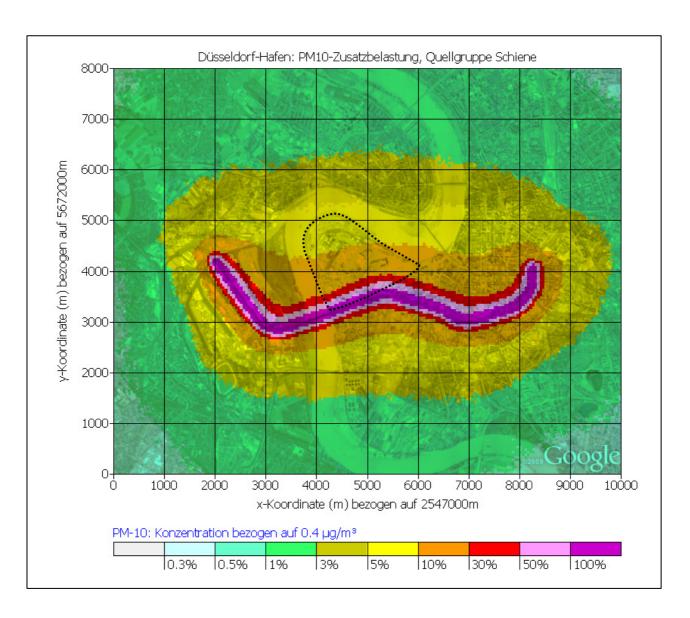


Bild 5.4: Bodennahe PM10-Immissionskonzentrationen durch die Quellgruppe Schiene innerhalb und außerhalb des Düsseldorfer Hafengebietes

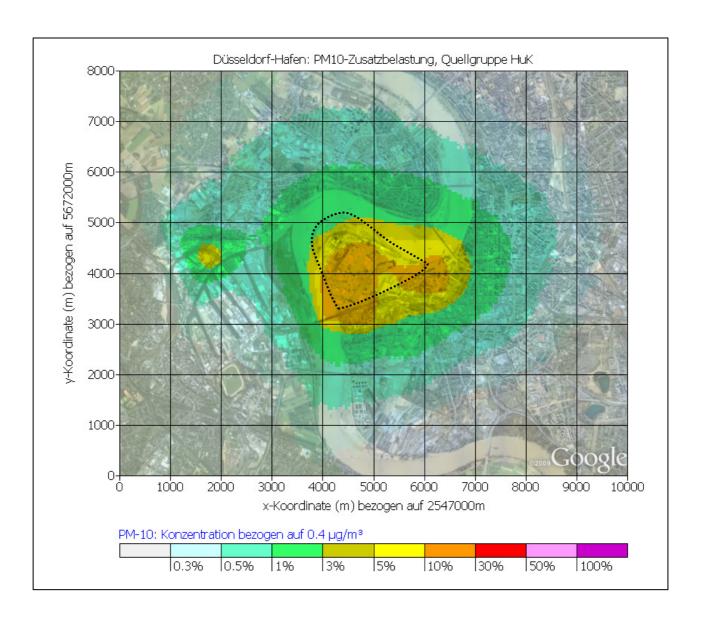


Bild 5.5: Bodennahe PM10-Immissionskonzentrationen durch die Quellgruppe HuK innerhalb und außerhalb des Düsseldorfer Hafengebietes

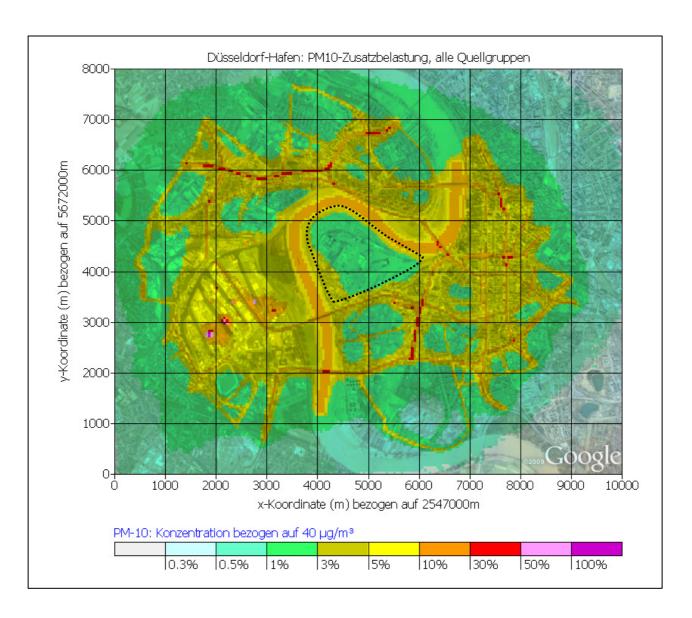


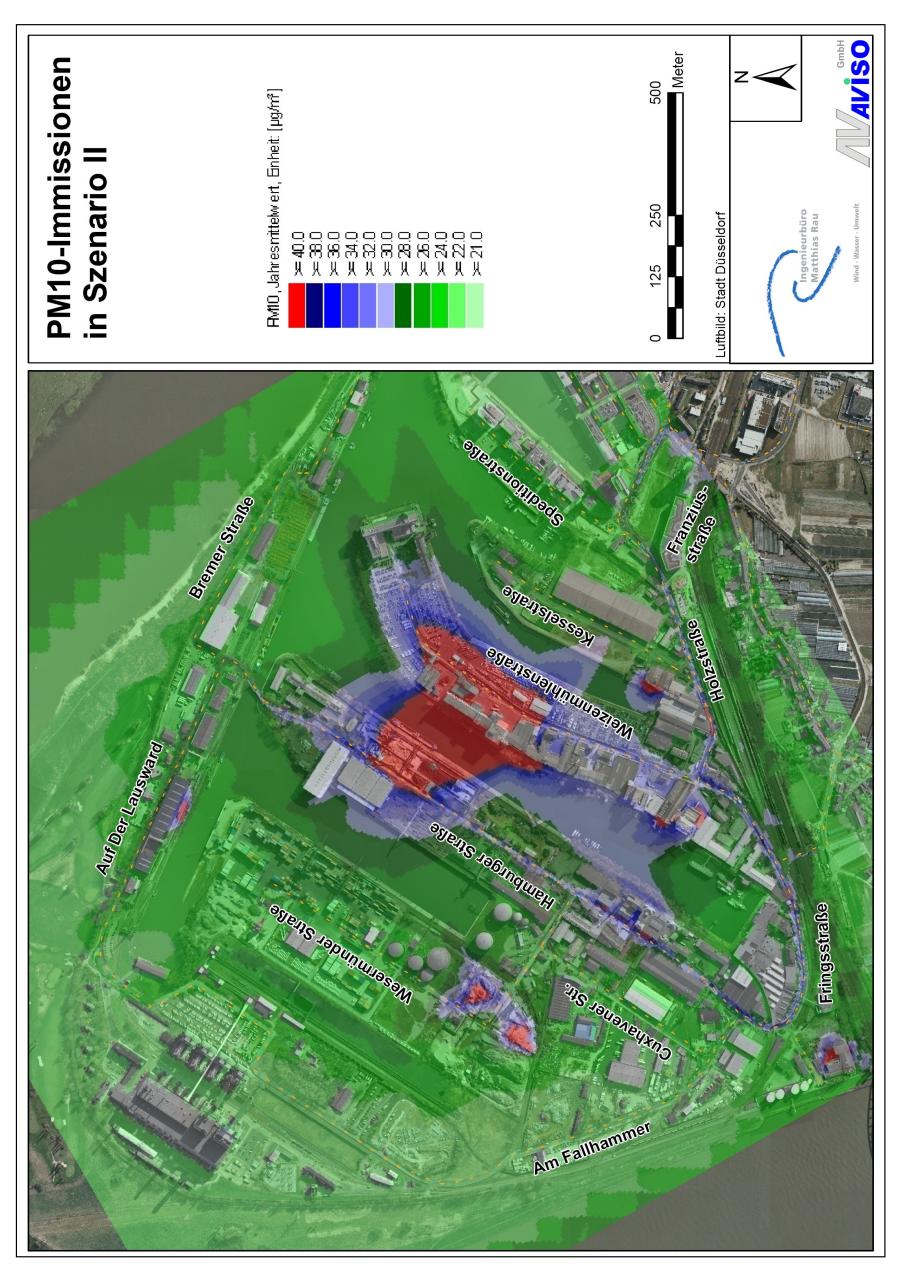
Bild 5.6: Bodennahe PM10-Immissionskonzentrationen durch alle Quellgruppen außerhalb (für die Quellgruppe Schiene und HuK auch innerhalb) des Düsseldorfer Hafengebietes

5.3 PM10-Immissionsgesamtbelastung im Düsseldorfer Hafen

In den Abbildungen Bild 5.7 bis 5.10 ist die PM10-Gesamtbelastung im Düsseldorfer Hafengebiet für die vier untersuchten Szenarien dargestellt. Die Farbskala ist folgendermaßen gewählt:

- grüne Farbtöne geben die Konzentrationen zwischen der regionalen Hintergrundbelastung (diese wurde mit 20 μg/m³ festgelegt) und < 30 μg/m³ an;
- die blauen Farbtöne repräsentieren den Bereich zwischen 30 μg/m³ und dem Grenzwert für das Jahresmittel von 40 μg/m³.
- Der Übergang zwischen den Grüntönen und den Blautönen ist für die Interpretation der nach 22. BlmSchV maximal zulässigen Überschreitungshäufigkeiten des Tagesmittelwertes (s. Tab. 5.1) von Bedeutung, wie im Folgenden näher erläutert wird:

Die 22. BlmSchV, deren PM10-Grenzwert für die Immissionsbeurteilung relevant ist, enthält neben den Immissionsgrenzwerten für den Jahresmittelwert von PM10 auch Immissionsgrenzwerte für den Tagesmittelwert von PM10, der nicht öfter als 35mal im Kalenderjahr (entspricht einem 90,4%-Wert) überschritten werden darf. Mit den vorliegenden Eingangsdaten und dem eingesetzten Berechnungsverfahren können direkt keine Kurzzeitwerte bestimmt werden. Hierzu wären eine meteorologische Zeitreihe, Zeitreihen der Stundenmittelwerte der Vorbelastung sowie detaillierte Emissionszeitreihen für alle Quellgruppen notwendig. Diese Datengrundlage ist im vorliegenden Fall nicht vorhanden und wäre nur mit großem Aufwand zu erstellen. Es gibt jedoch empirische Ansätze, mit deren Hilfe eine Angabe zur Anzahl der Überschreitung des Kurzzeitgrenzwertes für PM10 möglich ist. Es ist derzeit Standard, den 90,4%-Wert auf der Basis des Jahresmittelwertes abzuschätzen. Die Auswertung umfangreicher Messungen von kontinuierlich betriebenen Dauermessstellen in Deutschland und europäischen Nachbarländern zeigt einen nahezu linearen Zusammenhang zwischen dem 90,4%-Wert der Tagesmittelwerte vom Jahresmittelwert. Die Schwankungsbreite ist verständlicherweise hoch. Der "Best fit" ergibt je nach Quelle ein Verhältnis zwischen dem 90,4%-Wert und dem Jahresmittelwert von 1,62 und 1,79. Bei einem zulässigen 24-Stundenwert von 50 µg/m³ liegen die Schwellenwerte für den Jahresmittelwert bei den oben zitierten Faktoren zwischen 28 und 31 μg/m³. Das LANUV NRW kommt auf Grund der Auswertung von PM10-Messungen von bundesweit über 1000 Messstellen zu dem Ergebnis, dass ab einem Jahresmittel von 30 µg/m³ in über 90% der Fälle von mehr als 35 Überschreitungstagen ausgegangen werden kann. Unter Berücksichtigung der Ergebnisse der LANUV-Studie ist bei einem Jahresmittel von bis zu 30 µg/m³ mit hoher Wahrscheinlichkeit eine Unterschreitung des 90,4%-Wertes gegeben, bei einem Jahresmittel von > 30 μg/m³ mit hoher Wahrscheinlichkeit eine Überschreitung des 90,4%-Wertes gegeben.


Bild 5.7 zeigt die bodennahen Immissionskonzentrationen für den Istzustand. Flächig ausgedehnte Grenzwertüberschreitungen des Jahresmittelwertes sind vor allem im nördlichen Teil der Weizenmühlenstraße im Bereich eines Futtermittelbetriebes auszumachen. An mehreren anderen Punkten innerhalb des Hafengebietes treten lokal ebenfalls Überschreitungen des

PM10-Immissionswertes für das Jahresmittel auf. Dabei handelt es sich jedoch ausnahmslos um Bereiche, in denen staubendes Material umgeschlagen bzw. verladen wird, wie z.B. bei einem Baustoff- und Recyclingbetrieb und einem Transportbetonbetrieb in der Wesemünder Straße, bei der Verladeeinrichtung eines Rohstoffhandelbetriebes im Bereich des Hafenbeckens Lausward I sowie bei den bodennahen Quellen einer Mühlenfirma. Im Bereich der Kesselstraße und Speditionstraße liegen die Konzentrationen im Jahresmittel unter 30 μg/m³. Im Bereich der Holzstraße und der Fringsstraße sind lediglich lokal Überschreitungen des Grenzwertes für das Jahresmittel, vor allem infolge der Emissionen des Kfz-Verkehrs, auszumachen. Allerdings ist mit hoher Wahrscheinlichkeit im Bereich der Straßenrandbebauung dieser genannten Straßen eine Überschreitung des 30 μg/m³-Schwellenwertes gegeben. Bei der lokalen Interpretation der Ergebnisse in den Straßenräumen ist die nur begrenzt fein wählbare Auflösung im Rahmen dieser Untersuchung zu berücksichtigen (siehe Begründung hierzu in Kapitel 4.2.2).

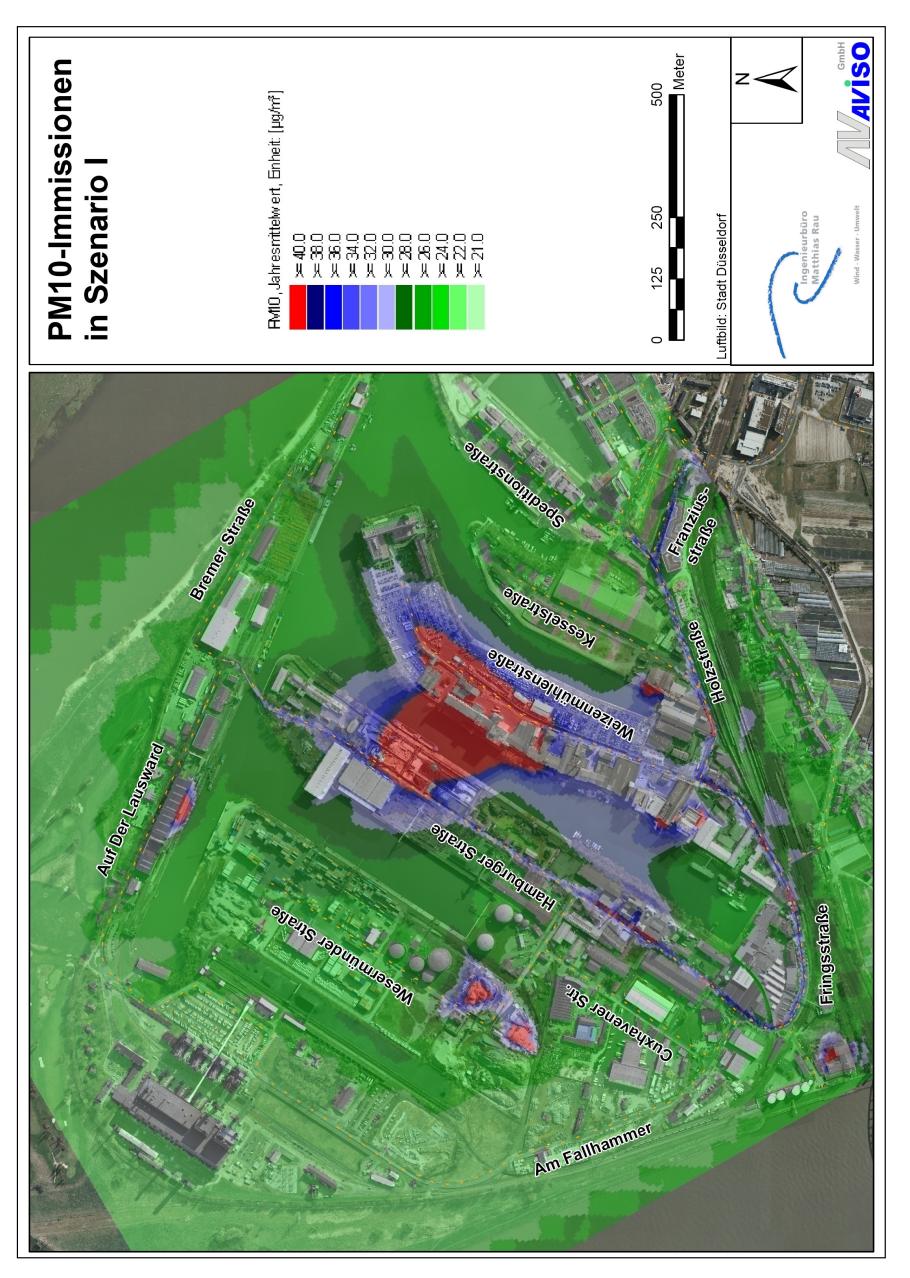
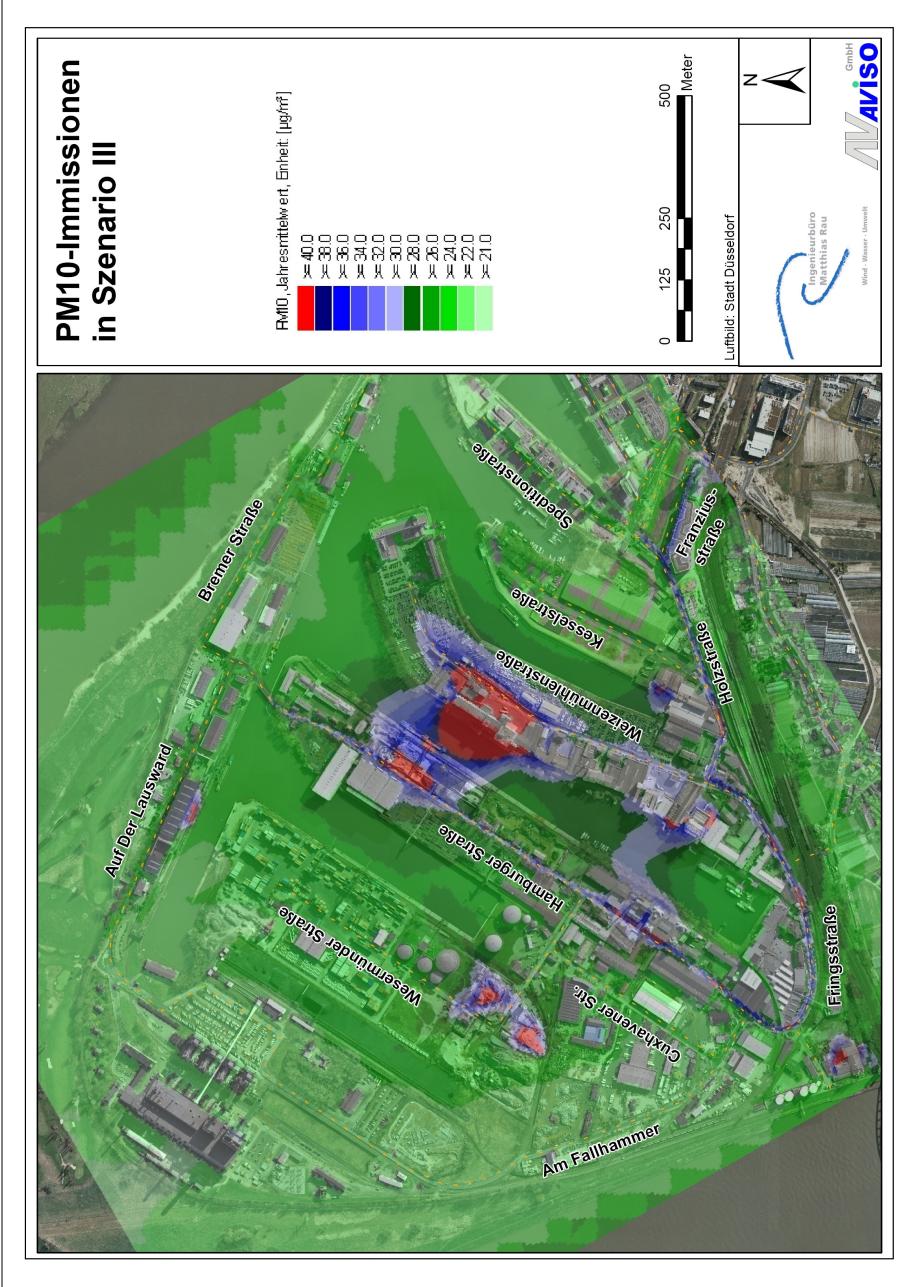

Bild 5.8 zeigt die Verhältnisse für das Szenarium I. Dieses Szenarium unterscheidet sich von Szenarium II im Wesentlichen durch die geplante Bebauung in der Kessel- und Speditionstraße sowie die veränderten Verkehrszahlen im Düsseldorfer Hafengebiet. Der Einfluss der im Planzustand geänderten Bebauung schlägt sich in einer gegenüber Szenarium II geänderten Immissionsverteilung östlich der Weizenmühlenstraße nieder. Die für das Jahr 2015 prognostizierten höheren Verkehrszahlen in der Holzstraße, Fringsstraße und Weizenmühlenstraße bewirken etwas erhöhte Immissionskonzentrationen in diesen Straßenabschnitten gegenüber dem Szenarium II. Allerdings sind Überschreitungen des Immissionswertes für das Jahresmittel weiterhin nur lokal zu erwarten. Im Bereich der geplanten Bebauung Kesselstraße / Speditionstraße liegen die prognostizierten PM10-Jahresmittelwerte unter 30 µg/m³. Der gegenüber dem Istzustand in diesen beiden genannten Straßen stark zunehmende Kfz-Verkehr erzeugt im Bereich der Bebauung keine kritischen Immissionskonzentrationen, da absolut gesehen auch im Planfall die Verkehrsstärke im Vergleich zu dem Verkehr der Hafenzugangsstraßen eher als gering einzustufen ist.

Bild 5.9 (Szenarium III) zeigt die Auswirkungen der Gesamtstaub-Emissionsreduzierung entsprechend der Maßgaben der neuen TA Luft (s. Tab. 3.2) für einige gefasste Quellen der emissionserklärungspflichtigen Betriebe. Gegenüber dem Szenarium I werden vor allem im Bereich zweier Futtermittelbetriebe die Flächen mit Grenzwertüberschreitungen sowie erhöhten Immissionskonzentrationen über dem Schwellenwert von 30 μ g/m³ deutlich in der Ausdehnung reduziert. Im Bereich der Kesselstraße erreicht man jetzt Konzentrationswerte um die 26 μ g/m³ im Jahresmittel.


Eine weitere Reduzierung bei der Gesamtstaub-Emissionskonzentrationen bei einigen Quellen der Futtermittelbetriebe auf 5 mg/m³ (s. Tab. 3.2) zeigt das Szenarium IV in Bild 5.10. Grenzwertüberschreitungen für das PM10-Jahresmittel sind für Szenarium IV nur noch lokal im Nahbereich einzelner Betriebe feststellbar.

Bodennahe PM10-Immissionsgesamtbelastung im Bereich des Düsseldorfer Hafens für Szenarium II (Istzustand) Bild 5.7:

Bodennahe PM10-Immissionsgesamtbelastung im Bereich des Düsseldorfer Hafens für Szenarium I (Planzustand) Bild 5.8:

Bodennahe PM10-Immissionsgesamtbelastung im Bereich des Düsseldorfer Hafens für Szenarium III (Planzustand) Bild 5.9:

INGENIEURBÜRO RAU

AVISO GMBH

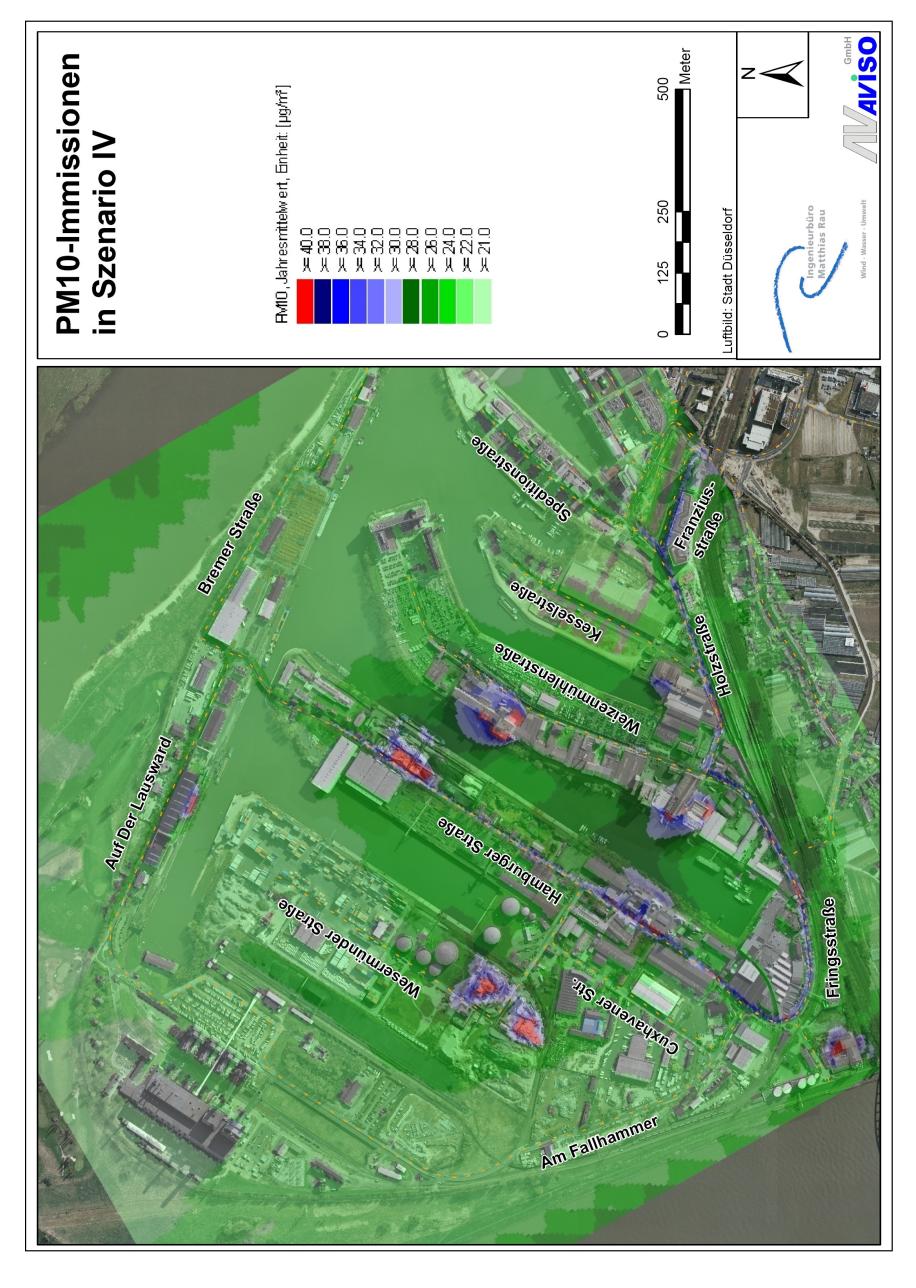


Bild 5.10: Bodennahe PM10-Immissionsgesamtbelastung im Bereich des Düsseldorfer Hafens für Szenarium IV Planzustand)

5.4 Abschätzung der PM2,5-Immissionen

Wie bereits in Kapitel 3.6 ausgeführt wurde, erfolgt derzeit die Umsetzung der EU-RL 2008/50/EG vom 21.05.2008 über die 39. BlmSchV in deutsches Recht. Die Verordnung steht kurz vor der Veröffentlichung (geplant: Juli 2010). In dieser Verordnung ist für Feinstaub der Körnung 2,5 μ m ab 01.01.2010 ein Zielwert für das Jahresmittel von 25 μ g/m³, ab 2015 ein Grenzwert für das Jahresmittel von ebenfalls 25 μ g/m³ vorgesehen. Ein Kurzzeitwert mit entsprechender maximal zulässiger Überschreitungshäufigkeit wie bei PM10 ist für PM2,5 nicht gegeben.

Im Rahmen dieser Untersuchung soll für eine erste Orientierung eine emissionsseitige und immissionsseitige Abschätzung des PM2,5-Anteils durchgeführt werden.

Für die Abschätzung der PM2,5-Emissionen wurde der mittlere PM2,5-Anteil an den PM10-Emissionen für jede Quellgruppe und Emissionsart auf der Basis unterschiedlicher Literaturquellen oder vorhandener Daten abgeschätzt. Die Ergebnisse sind in Tab. 3.9 dargestellt. Mit diesen Emissionsanteilen wurden die Immissionsberechnungen zur Bestimmung der Vorbelastung im Hafengebiet bzw. zur Bestimmung der Zusatzbelastung wiederholt. Diese Berechnungen wurden exemplarisch nur für das Planszenarium IV durchgeführt.

Zur Abschätzung des regionalen Hintergrundes wird auf das LANUV-Messnetz zurückgegriffen. Derzeit werden erst an wenigen ausgewählten Messstellen PM2,5-Immissiosmessungen durchgeführt. Aktuelle Messungen für das Jahr 2009 zeigen, dass das Jahresmittel für PM2,5 in etwa bei 70 bis 80% des PM10-Jahresmittels liegt. Konservativ wird im vorliegenden Fall der regionale Hintergrund von PM2,5 mit 80% des regionalen Hintergrundes von PM10 (20 μ g/m³ nach Kapitel 5.1) abgeschätzt.

Das Ergebnis der abgeschätzten bodennahen PM2,5-Jahresmittelwerte ist in Bild 5.11 für das Szenarium IV dargestellt.

Die rote Farbe in der Skala markiert den Grenzwert für das PM2,5-Jahresmittel von $25~\mu g/m^3$. Es ist deutlich zu sehen, dass die höchsten Konzentrationen im Nahbereich der Staub produzierenden Betriebe auftreten. Im Bereich der neu geplanten Bebauung entlang der Kesselstra0e und Speditionstraße liegen die Immissionskonzentrationen in einem Bereich von maximal $20~\mu g/m^3$. Die Grenzwerte können in diesem Bereich sicher eingehalten werden. Wie schon bei PM10 ist auch bei PM2,5 lokal mit Überschreitungen des Grenzwertes im Bereich der Fringsstraße und der Holzstraße zu rechnen.

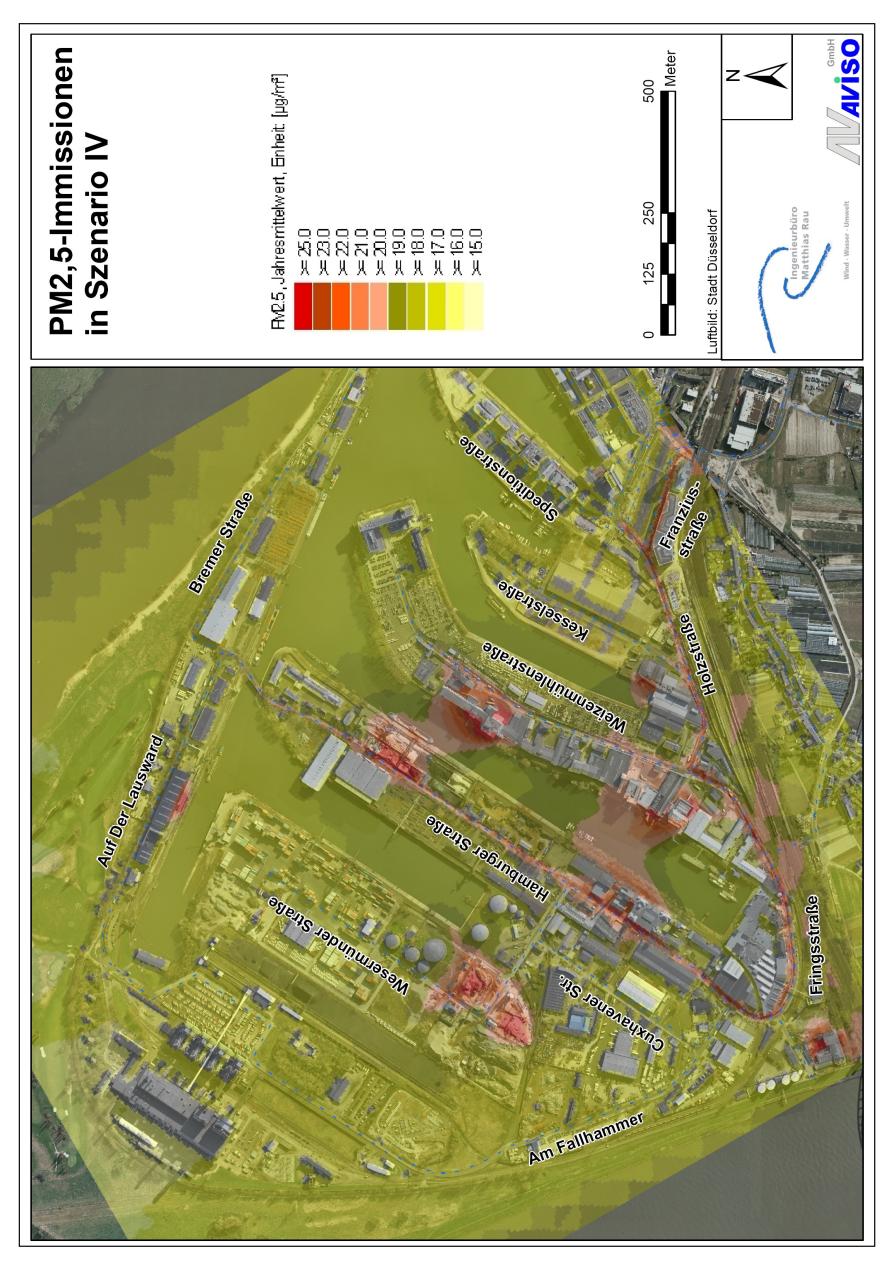


Bild 5.11: Bodennahe PM2,5-Immissionsgesamtbelastung im Bereich des Düsseldorfer Hafens für Szenarium IV Planzustand)

6 Zusammenfassung

Der Düsseldorfer Haupthafen als Teil des Neuss-Düsseldorfer Wirtschaftshafens ist seit seiner Gründung ein wichtiger Bestandteil der regionalen Wirtschaftsstruktur. Um den Standort auch langfristig zu sichern, wurde Mitte der 70er Jahre beschlossen, den damaligen Industrie- und Handelshafen einer Umstrukturierung bzw. Weiterentwicklung zu unterwerfen und Teile des Hafengebietes für die Ansiedlung von nicht-hafengebundenen Betrieben aus dem tertiären Sektor zu nutzen. Im Rahmen dieser Entwicklung entstand u. a. der heute als "Medienhafen" bekannte Teil im südlichen Hafengebiet. Um die sich daraus ergebenden positiven nutzungsstrukturellen Entwicklungen zielgerichtet weiterführen zu können, wurden 2003 Aufstellungsbeschlüsse für insgesamt vier Bebauungspläne gefasst, die die strukturelle Nutzung und Entwicklung der einzelnen Teilgebiete des Hafens vorgeben.

Im Grenzbereich zwischen Industrie- und Medienhafen kann es zu Nutzungskonflikten kommen, wenn die geplanten Mischstrukturen und speziell die Wohngebiete unter einer erhöhten Immissionsbelastung, verursacht durch die Industrieanlagen, zu leiden hätten. Wegen der stark im Hafengebiet vertretenen Futtermittelbetriebe spielt hier vor allem Feinstaub PM10 eine Rolle. Für die PM10-Immissionskonzentrationen im Bereich des Untersuchungsraumes sind jedoch neben Gewerbe/Industrie der Kfz-Verkehr, der Schiffs- und Bahnverkehr und Kleinfeuerungsanlagen (Hausbrand) verantwortlich. Zur Abschätzung der im Düsseldorfer Hafen vorhandenen und zukünftig zu erwartenden Feinstaubbelastung wurde das Ingenieurbüro Rau von der Stadt Düsseldorf beauftragt, die Feinstaubimmissionsbelastung (PM10) mittels mikroskaliger Ausbreitungsmodellierung zu berechnen und Aussagen über die Belastung zu treffen.

Dabei wurde zweistufig vorgegangen. Zum einen wurde die Immissionsbelastung im Bereich des Düsseldorfer Hafengebietes, die durch Staubemittenten außerhalb des eigentlichen Hafengebietes verursacht werden, ermittelt. In einem zweiten Schritt wurden mit mikroskaligen Ausbreitungsrechnungen für das Düsseldorfer Hafengebiet die PM10-Zusatzbelastungen, die durch Quellen innerhalb des Hafens erzeugt werden, berechnet. Dabei wurden für das Düsseldorfer Hafengebiet insgesamt 4 Szenarien untersucht, die sich zum einen in der Bebauungsstruktur, zum anderen in der Emissionsstruktur unterscheiden. Sachstand war die Planung im Frühjahr 2009. Abschließend wurden die für das Düsseldorfer Hafengebiet feinskalig ermittelten Zusatzbelastungen mit der Vorbelastung durch die umliegenden Quellen sowie der großräumigen regionalen Hintergrundbelastung zur Gesamtbelastung überlagert und anhand der entsprechenden Grenzwerte der 39. BImSchV bewertet.

Basis dieser Untersuchung war eine äußerst umfangreiche und detaillierte Emissionsprognose, mit der für alle in Frage kommenden Emittentengruppen die PM10-Emissionsmengen innerhalb des Hafengebietes sowie in einem Umkreis von 2 km außerhalb ermittelt wurden. Die wichtigsten Ergebnisse der Emissionsprognose sind:

• die emissionserklärungspflichtigen und nicht-emissionserklärungspflichtigen Betriebe stellen sowohl auf das Gesamtgebiet bezogen als auch im Düsseldorfer Hafen die

größte Staub-Emissionsquelle dar. Bei dem Planszenarium IV, bei dem bei einigen emissionserklärungspflichtigen Betrieben entsprechend der neuen TA Luft die Emissionskonzentration für den Gesamtstaub deutlich reduziert wurde, dominieren sogar die nicht-emissionserklärungspflichtigen gegenüber den emissionserklärungspflichtigen Betrieben.

- Der Straßenverkehr spielt im Düsseldorfer Hafen aufgrund der geringen Verkehrsmengen und der hohen industriellen Emissionen eine untergeordnete Rolle.
 Im Gesamtgebiet dagegen ist der Straßenverkehr mit ca. einem Viertel der gesamten PM10-Emissionen der zweitgrößte Emittent.
- Schienen-, Schiffsverkehr und Kleingewerbe sind vor allem im Düsseldorfer Hafen von geringer Relevanz. Grund sind der geringe Schiffs- und Bahnverkehr im Vergleich zu den umgebenden Wasserstraßen (Rhein) und Bahnstrecken (Verbindung Düsseldorf – Neuss), sowie die geringe Versorgung mit kleineren Heizungsanlagen, wie sie sich in größerer Dichte wohl eher in wohnbaulich geprägten Stadtteilen finden lassen.

Die Berechnungen der PM10-Gesamtbelastung, also der Überlagerung aus regionalem Hintergrund, der durch die umliegenden Quellen im Düsseldorfer Hafengebiet erzeugten Konzentrationen sowie der durch Quellen im Düsseldorfer Hafengebiet erzeugten Konzentrationen führen zu folgendem Ergebnis:

Im Istzustand (heutige Bebauung und heutiger Verkehr) sind vor allem im nördlichen Teil der Weizenmühlenstraße im Bereich zweier Futtermittelbetriebe flächige bodennahe Grenzwert- überschreitungen für das Jahresmittel auszumachen. Des Weiteren treten lokal Grenzwert- überschreitungen hauptsächlich in den Bereichen auf, in denen staubendes Material umgeschlagen bzw. verladen wird. Im Bereich der Kesselstraße und Speditionstraße liegen die Konzentrationen im Jahresmittel unter 30 μ g/m³. Der Grenzwert für das Jahresmittel wird somit in diesem Bereich sicher eingehalten.

Bei dem ersten Planszenarium (geplante Bebauung in der Kessel- und Speditionstraße sowie Verkehr im Jahre 2015 im Hafengebiet) verändert die geplante Bebauung vor allem die bodennahe Immissionsverteilung östlich der Weizenmühlenstraße. Im Bereich der geplanten Bebauung Kesselstraße / Speditionstraße liegen die prognostizierten PM10-Jahresmittelwerte sicher unter 30 µg/m³. Der gegenüber dem Istzustand in diesen beiden genannten Straßen stark zunehmende Kfz-Verkehr erzeugt im Bereich der Bebauung keine kritischen Immissionskonzentrationen, da absolut gesehen auch im Planfall die Verkehrsstärke im Vergleich zu dem Verkehr der Hafenzugangsstraßen eher als gering einzustufen ist.

Bei Szenarium III (Reduzierung der Gesamtstaubemissionen bei einigen Quellen der emissionserklärungspflichtigen Betriebe im Düsseldorfer Hafengebiet) werden vor allem im Bereich zweier Futtermittelbetriebe die Flächen mit Grenzwertüberschreitungen sowie erhöhten Immissionskonzentrationen über dem Schwellenwert von 30 μg/m³, der ein Indiz für die Einhaltung des PM10-Kurzzeitgrenzwertes ist, deutlich in der Ausdehnung reduziert. Im Bereich

der Kesselstraße und der Speditionstraße erreicht man jetzt Konzentrationswerte um die $26 \ \mu g/m^3$ im Jahresmittel.

Bei Szenarium IV erfolgt eine weitere Reduzierung der Gesamtstaub-Emissionskonzentrationen einiger Quellen im Düsseldorfer Hafengebiet. Grenzwertüberschreitungen für das PM10-Jahresmittel sind bei diesem Szenarium nur noch lokal im Nahbereich einzelner Betriebe feststellbar.

7 Literaturverzeichnis

22. BIMSCHV 2002

Zweiundzwanzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes, Verordnung über Immissionswerte für die Schadstoffe in der Luft vom 11. September 2002

39. BlmschV 2010

Neununddreißigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes, Verordnung über Luftqualitätsstandards und Emissionshöchstmengen. Entwurf, Stand Februar 2010

ANECO 2002

Prognose der Immissionszusatzbelastungssituation an Schwebstaub und Staubniederschlag resultierend aus diffusen Emissionen beim Umschlag von Getreide und Futtermitteln auf die Umgebung im Düsseldorfer Hafen, Mönchengladbach, 2002

AVISO 2007

Untersuchungen zur Erstellung eines Luftreinhalteplans für die Stadt Düsseldorf, Aachen, 2007

AVISO 2009

Aktualisierung des landesweiten Emissionskatasters Kfz-Verkehr für das Untersuchungsgebiet Nordrhein-Westfalen auf das Bezugsjahr 2007 und Prognose für die Jahre 2010, 2015 und 2020, Aachen, 2009

BUWAL 2003

Modelling of PM10 and PM2,5 ambient concentrations in Switzerland 2000 and 2010, Bern, 2003

BKR 2007

Übersicht der Betriebe im Hafengebiet Düsseldorf, Aachen, 2007

DÜTEMEYER 2008

Bewertung der Aussagekraft amtsinterner Unterlagen zur Beurteilung der PM₁₀-Situation im Düsseldorfer Hafen aus Sicht des Immissionsschutzes, Essen, 2008

EICHHORN 1989

Entwicklung und Anwendung eines dreidimensionalen mikroskaligen Stadtklima-Modells. Diss. Meteorologisches Inst. Univ. Mainz

EMPA 2000

Eidgenössische Materialprüfungs- und Forschungsanstalt, Martin Mohr, Forschungsbericht Nr. 200069, Partikelausstoß von benzinbetriebenen Personenwagen, Untersuchung zur Partikelanzahl und –masse sowie den Messverfahren, 2000

EPA 2006

Miscellaneous Sources - Industrial Wind Erosion, 2006

INFRAS 2004

Handbuch für Emissionsfaktoren des Straßenverkehrs, Version 2.1, Bern, 2004

LENSING 2003

Programm DMTG für Windows zum Auswerten, Hochrechnen und Visualisieren von Verkehrsdaten aus Kurz- und Langzeitzählungen, Büro für angewandte Statistik, Aachen, 2003

RAU, 2000

Vergleich berechneter (MISKAM) und gemessener (Windkanal) Wind- und Konzentrationsfelder für ein U-Gebäude. Projekt im Auftrag des Landesumweltamtes Nordrhein-Westfalen; unveröffentlicht

RÖCKLE 1995

Ermittlung des Strömungs- und Konzentrationsfeldes im Nahfeld typischer Gebäudekonfigurationen. PEF-Projekt "Europäisches Forschungszentrum für Maßnahmen zur Luftreinhaltung". Bericht FZKA-PEF 136

SCHNEIDER 2006

Schneider, C.; Niederau, A.; Brandt, A.; Schulz, T.: Ermittlung der durch Aufwirbelung und Abrieb im Straßenverkehr verursachten PM10-Emissionen (Ein modifizierter Ansatz), Aachen, 2006

STADT DÜSSELDORF 2008 a

Informationsvorlage: Erschließungssystem Franziusstraße - Provisorische Anbindung Plock-/Holzstraße, 2008

STADT DÜSSELDORF 2008 b

Bebauungsplan-Entwurf Nr. 5175/007 - Weizenmühlenstraße -, Düsseldorf, 2008

STADT DÜSSELDORF 2008 c

Bebauungsplan-Entwurf Nr. 5176/003 - Lausward/Hamburger Straße -, Düsseldorf, 2008

STADT DÜSSELDORF 2008 d

Bebauungsplan-Entwurf Nr. 5275/020 - Kesselstraße -, Düsseldorf, 2008

STADT DÜSSELDORF 2008 e

Bebauungsplan-Entwurf Nr. 5275/022 - Speditionstraße -, Düsseldorf, 2008

TA LUFT, 2002

Erste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutzgesetz, technische Anleitung zur Reinhaltung der Luft vom 24.07.2002. Gemeinsames Ministerialblatt, Nr. 25-29 S. 511 ff. Hrsg.: Bundesminister des Inneren.

UBA 2007

Umweltbundesamt (Hrsg.), Emissionen und Maßnahmenanalyse Feinstaub 2000 – 2020, Forschungsbericht 204 42 202/2, Dessau-Roßlau, 2007

UBA 2008

Umweltbundesamt (Hrsg.), Effiziente Bereitstellung aktueller Emissionsdaten für die Luftreinhalteplanung, Forschungsbericht 205 42 322, Dessau-Roßlau, 2008

VDI 3790

VDI 3790 Blatt 3: Emissionen von Gasen, Gerüchen und Stäuben aus diffusen Quellen, Berlin, 2010

VDI 3783

VDI 3783, BL. 9: Prognostische mikroskalige Windfeldmodelle – Evaluierung für Gebäudeund Hindernisumströmung. Entwurfsfassung vom 31.12.2003

ZENGER; WEISSENMEIER 2001

Validierung mikroskaliger atmosphärischer Ausbreitungsmodelle. Immissionsschutz, Heft3, 2001

Anhang A

Staub-Emissionen von emissionserklärungspflichtigen Betrieben

Tab. A.1: PM10-Emissionsquellen aus den Emissionserklärungen (2004/2008) des Düsseldorfer Hafens und der Umgebung (2 km)

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	111-97130	Schornstein Werk 1	43	0,0001	2008
	111-97130	Schornstein Werk 1	43	0,2621	2008
	111-97130	Lüfter Zentralaspiration Werk 1	35	7,8499	2008
	111-97130	Abluft Combinet Werk 1	8	2,3920	2008
	111-97130	Lüfter 1 Getreideannahme Werk 1	4	0,8500	2008
	111-97130	Lüfter 2 Getreideannahme Werk 1	4	0,8500	2008
	111-97130	Lüfter 3 Getreideannahme Werk 1	4	0,8500	2008
	111-97130	Lüfter 4 Getreideannahme Werk 1	4	0,8500	2008
	111-97130	Zyklon Presse 1 Werk 2	37	268,0925	2008
	111-97130	Zyklon Presse 2 Werk 2	37	133,0914	2008
	111-97130	Zyklon Presse 3 Werk 2	37	133,5321	2008
	111-97130	Zyklon Presse 4 Werk 2	37	133,6056	2008
	111-97130	Zyklon Presse 5 Werk 2	37	100,4062	2008
	111-97130	Zyklon Presse 6 Werk 2	37	33,5790	2008
	111-97130	Lüfter Filter Mühle 1 Werk 2	40	8,9872	2008
	111-97130	Lüfter Flter Mühle 2 Werk 2	40	8,2551	2008
	111-97130	Lüfter Filter Mischanlage oben Werk 2	42	4,2858	2008
	111-97130	Lüfter Filter grüner weißer Weg Werk 2	42	0,3965	2008
	111-97130	Lüfter Aspiration Siloanlage Elevator 1+2	42	0,2516	2008
	111-97130	Lüfter Aspiration Sauganlage Werk 2	34	0,3660	2008
	111-97130	Lüfter 1 Aspiration Mischanlage Werk 2	9	30,9043	2008
	111-97130	Lüfter 2 Aspiration Mischanlage Werk 2	42	30,9043	2008
	111-97130	Annahme Trichter Werk 2	4	0,0000	2008
Futtermittelbetrieb 2	111-97130	Lüfter 1 Trichter Werk 2	2	17,0000	2008
	111-97130	Lüfter 2 Trichter Werk 2	2	17,0000	2008
	111-97130	Lüfter 3 Trichter Werk 2	2	17,0000	2008
	111-97130	Schornstein Werk 3	28	3,8132	2008
	111-97130	Zyklon 1 Presse 1 (5) Werk 3	10	35,2950	2008
	111-97130	Zyklon 2 Presse 1 (5) Werk 3	10	35,2950	2008
	111-97130	Zyklon Presse 2 (6) Werk 3	10	42,8834	2008
	111-97130	Zyklon 1 Presse 3 (1) Werk 3	10	35,2950	2008
	111-97130	Zyklon 2 Presse 3 (1) Werk 3	10	35,2950	2008
	111-97130	Zyklon 1 Presse 4 (2) Werk 3	10	42,8834	2008
	111-97130	Zyklon 2 Presse 4 (2) Werk 3	10	42,8834	2008
	111-97130	Lüfter Filter Mühle 1 Werk 3	8	0,9996	2008
	111-97130	Lüfter Filter Mühle 2 Werk 3	8	1,6660	2008
	111-97130	Lüfter Filter Mühle 3 Werk 3	9	4,2840	2008
	111-97130	Lüfter Aspiration Bandw aagen Werk 3	12	1,7850	2008
	111-97130	Lüfter Aspiration Füllanlage Werk 3	12	1,3260	2008
	111-97130	Lüfter Aspiration Verladung Werk 3	9	0,5248	2008
	111-97130	Lüfter Aspiration Mischerei Werk 3	9	3,2368	2008
	111-97130	Lüfter Aspiration Annahme Bunker	10	4,0426	2008
	111-97130	Annahme Trichter Werk 3	4	84,0806	2008
	111-97130	Lüfter 1 Trichter Werk 3	3	20,2938	2008
	111-97130	Lüfter 2 Trichter Werk 3	3	20,2938	2008
	111-97130	Lüfter 3 Trichter Werk 3	3	20,2938	2008
	20-0097118	DEFLEKTORHAUBE 5C	39	21,6000	2004
Futtermittelbetrieb 1			1	=:,::00	2007
i attornittoibotriob i	20-0097118	DEFLEKTORHAUBE 2A	35	122,4000	2004

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	20-0097118	DEFLEKTORHAUBE 3A	40	408,0000	2004
	20-0097118	DEFLEKTORHAUBE 4G	41	1020,0000	2004
	20-0097118	DEFLEKTORHAUBE 4H	40	612,0000	2004
	20-0097118	LUFTAUSTRITT 4I	24	514,0800	2004
	20-0097118	Luftaustritt 8 H	41	40,8000	2004
	20-0097118	DEFLEKTORHAUBE 5A	40	459,0000	2004
	20-0097118	REGENHAUBE 5B	41	520,2000	2004
	20-0097118	Deflektorhaube 8 i	41	18,3600	2004
	20-0097118	Luftaustritt 6 Q	12	71,4000	2004
	20-0097118	DEFLEKTORHAUBE 6B	41	8,5000	200
	20-0097118	REGENHAUBE 6C	35	15,3000	2004
	20-0097118	DEFLEKTORHAUBE 6D	41	14,8750	200
	20-0097118	DEFLEKTORHAUBE 6E	41	701,2500	2004
	20-0097118	Deflektorhaube 6 R	36	27,5400	200
	20-0097118	DEFLEKTORHAUBE 6G	41	701,2500	2004
	20-0097118	DEFLEKTORHAUBE 6H	41	701,2500	2004
	20-0097118	DEFLEKTORHAUBE 61	41	541,8750	2004
	20-0097118	DEFLEKTORHAUBE 6K	41	743,7500	2004
	20-0097118	LUFTAUSTRITT 6L	39	153,0000	2004
	20-0097118	DEFLEKTORHAUBE 6M	11	3656,2500	2004
	20-0097118	DEFLEKTORHAUBE 6N	11	2641,2750	200
	20-0097118	DEFLEKTORHAUBE 60	11	2641,2750	200
Futtermittelbetrieb 1	20-0097118	DEFLEKTORHAUBE 7A	41	61,2000	200
	20-0097118	DEFLEKTORHAUBE 8A	41	260,1000	200
	20-0097118	DEFLEKTORHAUBE 8B	41	1101,6000	200
	20-0097118	DEFLEKTORHAUBE 8C	41	1101,6000	200
	20-0097118	DEFLEKTORHAUBE 8D	41	520,2000	200
	20-0097118	DEFLEKTORHAUBE 8E	41	520,2000	200
	20-0097118	DEFLEKTORHAUBE 8F	42	3150,0000	200
	20-0097118	Deflektorhaube 6P	11	2762,5000	200
	20-0097118	DEFLEKTORHAUBE 8G	42	3150,0000	200
	20-0097118	Deflektorhaube 6 S	36	27,5400	200
	20-0097118	Deflektorhaube 6 T	36	13,7700	200
	20-0097118	Deflektorhaube 6 U	36	13,7700	200
	20-0097118	Deflektorhaube 7 D	36	9,1800	200
	20-0097118	Deflektorhaube 7 B	41	140,2500	200-
	20-0097118	Deflektorhaube 7 C	41		
	20-0097118	Luftaustritt 8 J		140,2500	200
	20-0097118	LUFTAUSTRITT 4A	7	760,5000	200
				227,6640	200
	20-0097118 20-0097118	ANNAHMEGOSSE 4C 10 ANNAHMEGOSSE 4C 10	36	3150,0000	200
			36	3360,0000	200
	20-0097118	ANNAHMEGOSSE 4D 10 DEFLEKTORHAUBE 1C	36	3150,0000	200
	20-0097118	LUFTAUSTRITT 1D	42	612,0000	200-
	20-0097118		39	476,0000	200
Maria Cita Dana 1111	20-0143177	ABZUG KNETER D 10	7	1,7500	200
Werk für Beschichtungen /	20-0143177	ABZUEGE RW I+II 10	8	7,6500	200
Kleber / Reiniger	20-0143177	Schornstein	18	1,9673	200
	20-0143177	Abzug Kneter R + M	8	1,7000	200
Baustoff- u. Recycling-Betrieb	20-0558849	Brecher	6	481,3200	200

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	20-0558849	Siebanlage	3	320,8800	2004
Baustoff- u. Recycling-Betrieb	20-0558849	Bauschutt-RC-Lager	3,5	919,8000	2004
	20-0633943	Absiebung	6	68,6875	2004
	20-0167182	Auspuff GTE 1	63	0,2036	2004
	20-0167182	Auspuff GTE 2	63	0,1451	2004
	20-0167182	Off. Tiefbunker	4	0,0000	2004
	20-0167182	Off. Tiefbunker	4	0,0000	2004
	20-0167182	Kohlelager	8	148,7383	2004
Kraftw erksbetrieb	20-0167182	Kohlelager	8	6,4458	2004
	20-0167182	Schiffsentladestelle	5	6,4458	2004
	20-0167182	Heißw asserk. A	60	2,4768	2004
	20-0167182	Heißw asserk. A	60	0,4550	2004
	20-0167182	Heißw asserk. A	60	2,7486	2004
	20-0167182	Kamin E	150	19,8180	2004
GuD-Kraftw erk	20-9356697	Kamin	35	0,2757	2004
	20-9347662	Kran 60		236,2500	2004
	20-9347662	Kran 66		5,9500	2004
	20-0167270	Verladebrücke VB 1		40,6000	2004
Ortsansässige Hafen-GmbH 1	20-0167270	Verladebrücke VB 2		8,4000	2004
	20-0167270	Verladebrücke VB 3		168,3500	2004
	20-0167270	Verladebrücke VB 8		4,5500	2004
	20-0167270	Kran 59		93,1000	2004
	20-0501450	Mischanlage	25	668,6114	2004
	20-0501450	Füllersilo 1	25	0,3246	2004
	20-0501450	Füllersilo 1	25	0,3246	2004
Asphaltmischw erk	20-0501450	Braunkohlesilo	21	0,2791	2004
	20-0501450	Bitumenheizung	9	3,1113	2004
	20-0501450	Mob Brech und Siebanlage	4	13,7025	2004
Betrieb für Umschlag und	23-9020233	Siloaufsatzfilter	76.7	312,1200	2004
Lagerung 1	23-9020233	Filter Lkw -Verladung	42,6	26,4000	2004
	23-0846749	SchornsteinK1	18	4,1940	2004
Spedition	23-0846749	SchornsteinK1	18	0,1887	2004
.,	23-0846749	SchornsteinK2	18	0,1887	2004
	23-0270075	AUSBLASST.FILTER 1	5	157,3299	2004
	23-0270075	AUSBLASST.FILTER13	56	992,6538	2004
	23-0270075	AUSBLASST.FILTER14	20	267,3216	2004
	23-0270075	AUSBLASST.FILTER15	20	162,4172	2004
	23-0270075	AUSBLASST.FILTER16	20	301,3794	2004
	23-0270075	AUSBLASST.FILTER17	18	66,5091	2004
	23-0270075	AUSBLASST.FILTER18	12		2004
	23-0270075	AUSBLASST.FILTER19	12	125,6334	2004
Zementw erk	23-0270075	AUSBLASST.FILTER 2	11	87,7149	2004
	23-0270075	AUSBLASST.FILTER 3	9		2004
	23-0270075	AUSBLASST.FILTER 4	11		2004
	23-0270075	AUSBLASST.FILTER 5	57	87,7149	2004
	23-0270075	AUSBLASST.FILTER 6	55		2004
	23-0270075	AUSBLASST.FILTER 7	9	86,1084	2004
	23-0270075	KAMIN M.D.FILTER 8	49		
	23-0270075	KAMIN M.D.FILTER 9	50	59,3263	2004 2004
	20 02/00/0	10 (17 4 171).1 111 11 (3	50	09,0203	2004

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	23-0034848	Schüttgosse	0	0,1189	2004
	23-0034848	Schüttgosse	0	0,1189	2004
Lebensmittelmühle 1	23-0034848	Zentr.Aspiration	0	0,0408	2004
	23-0433246	Zentralaspiration	15	0,0020	2004
	23-0433246	Schüttgosse	0	0,0739	2004
	23-0042820	Kamin	60	49,9479	2004
	23-0042820	Kamin	12	0,0017	2004
	23-0042820	Kamin	12	0,0010	2004
Kartonherstellung	23-0042820	Kamin	12	0,0158	2004
	23-0042820	Kamin	35	10,2561	2004
	23-0042820	Kamin	35	3,0064	2004
	23-0042820	Kartonmaschinenabluft	24	6,1677	2004
	23-0034936	Kran 3		28,7000	2004
	23-0034936	Kran 4		29,7500	2004
	23-0034936	Kran 8	3	92,4000	2004
	23-0034936	Foerderb-Ueberg	1	3,5000	2004
	23-0034936	Kran 17	3	408,4500	2004
Ortsansässige Hafen-GmbH 2	23-0034936	Kran 18	3	442,4000	2004
	23-0034936	Kran 19	3	76,3000	2004
	23-0034936	Kran 20	3	197,0500	2004
	23-0034936	Kran 21	3	332,5000	2004
	23-0034936	Kran 22	3		2004
	23-0034936	Kran 24		25,9000	2004
Aluminiumerzeugung und	23-0474624	KAMIN (Q1) - Zentralkamin	50	144,4950	2004
-bearbeitung	23-0474624	Kamin (Q3) - C-Staub-Filter	15	33,0174	2004
	23-0480129	POS.200 KAMIN	42	407,5728	2004
	23-0480129	POS.850 KAMIN	27	2,3229	2004
	23-0480129	POS.885 KAMIN	26	0,1369	2004
	23-0480129	POS.7100 KAMIN	27	14,3945	2004
	23-0480129	POS.702,714 KAMIN	26	0,0219	2004
	23-0480129	POS.7107 KAMIN	26	0,3326	2004
	23-0480129	POS.712,716 KAMIN	26	0,0426	2004
	23-0480129	POS.7175 KAMIN	26	0,0000	2004
	23-0480129	POS.7175 KAMIN	26	0,0031	2004
	23-0480129	POS.718 KAMIN	26	0,0146	2004
	23-0480129	POS.721,723,729 KA	26	0,1372	2004
	23-0480129	POS.250 KAMIN	27	6,7554	2004
Gipsw erk	23-0480129	POS.725,735, KAMIN	26	0,2070	2004
	23-0480129	POS.727,731 KAMIN	26	0,0293	2004
	23-0480129	POS.733,741 KAMIN	26		2004
	23-0480129	POS.1027 KAMIN	31	0,0575	2004
	23-0480129	POS.116 KAMIN	15		2004
	23-0480129	POS.119 KAMIN	18		2004
	23-0480129	POS.122 KAMIN	22		2004
	23-0480129	POS.124 KAMIN	12	,	2004
	23-0480129	POS.3143 Kamin	42		2004
	23-0480129	POS.31694 Kamin	26		2004
	23-0480129	POS.370 KAMIN	27		2004
	23-0480129	POS.373 KAMIN	27	13,5160	2004

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	23-0480129	POS.437 KAMIN	26	0,0000	2004
	23-0480129	POS.455 KAMIN	27	51,8999	2004
Gipsw erk	23-0480129	POS.545 KAMIN	27	7,0863	2004
	23-0480129	POS.650 KAMIN	26	0,0380	2004
	23-0480129	POS.660 KAMIN	27	0,9130	2004
	23-0034684	Schiffslöschanlage	3	503,0640	2004
	23-0034684	Ausblasrohr	17	0,0006	2004
	23-0034684	Ausblasöffnung	60	0,5967	2004
	23-0034684	Aspiration Silo 1	50	502,6050	2004
	23-0034684	Aspiration Silo 1	50	335,0700	2004
	23-0034684	Aspiration Silo 1	50	251,5320	2004
	23-0034684	Aspiration Silo 2	60,5	234,7632	2004
	23-0034684	Aspiration Mineralanlage	20	21,8663	2004
	23-0034684	Aspiration Mahlen & Mischen	49	846,7097	2004
Futtermittelbetrieb 3	23-0034684	Vermahlung	37	1435,2471	2004
	23-0034684	Vermahlung	37	1028,1600	2004
	23-0034684	Aspiration Presserei	52	2677,5000	2004
	23-0034684	Pelletkühlung	52	1019,9996	2004
	23-0034684	Pelletkühlung	52	1019,9995	2004
	23-0034684	Pelletkühlung	52	1019,9995	2004
	23-0034684	Pelletkühlung	33	383,0400	2004
	23-0034684	Pelletkühlung	52	143,6400	2004
	23-0034684	Aspiration Presserei	52	267,7500	2004
	23-0034684	Aspiration Verladung	11	711,4500	2004
	23-0509179	Entstaubung Mahltrocknung	3	56,5274	2004
	23-0509179	Zentralabsaugung der Vorbrecheranlage	3	0,0690	2004
Werk für Mineralstoffe	23-0509179	Entstaubung Absackung/Palettierung	8	4,9342	2004
Werk für Mineralstoffe	23-0509179	Absaugung Mahl-Sichtkreislauf 1	23	3,4406	2004
	23-0509179	Kamin Mahl-Sichtkreislauf 1	23	37,2440	2004
	23-0509179	Kamin Mahl-Sichtkreislauf 1	23	18,2992	2004
	23-0042480	ABGASKAMIN	13	47,3603	2004
	23-0042480	KAMIN VORZERKL.	11	258,7236	2004
	23-0042480	KAMIN MAHLANLAGE 11	16	473,6752	2004
	23-0042480	KAMIN MAHLANLAGE 12	12	209,5590	2004
	23-0042480	KAMIN MAHLANLAGE 14	15	140,6172	2004
	23-0042480	KAMIN BRECH-U. SIEBANLAGE 17	14	33,6427	2004
Mork für Naturatain	23-0042480	KAMIN MAHLANLAGE 2	13	97,7160	2004
Werk für Naturstein	23-0042480	KAMIN MAHLANLAGE 3	10	65,8750	2004
	23-0042480	KAMIN MAHL-SIEBANLAGE 4	9	5,8647	2004
	23-0042480	KAMIN MAHLANLAGE 5	10	77,9415	2004
	23-0042480	KAMIN MAHLANLAGE 6	16	137,7136	2004
	23-0042480	KAMIN MAHLANLAGE 7	14	218,8512	2004
	23-0042480	KAMIN SIEBANLAGE 8	14	190,0464	2004
	23-0042480	KAMIN VORZERKL.	10	227,5114	2004
	23-0128706	KAMIN Dampfkessel	34	7,9314	2004
Tanklagerunternehmen	23-0254406	Kamin Warmw asserkessel	10	2,1234	2004
	23-0254406	Kamin Dampfkessel	10	3,6291	2004
1.1	23-0034837	Filteranlage Löschturm	23		2004
Lebensmittelmühle 2	23-0034837	Filteranlage Nebenproduktbearbeitung	37		2004

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	23-0034837	Filteranlage Weißreinigung	37	892,2960	2004
	23-0034837	Filteranlage Abtransporte	3	793,1520	2004
	23-0034837	Filteranlage ProdLinie 1	37	1586,3040	2004
	23-0034837	Filteranlage ProdLinie 1	37	2149,4419	2004
	23-0034837	Filteranlage ProdLinie 1	37	1257,1459	2004
	23-0034837	Filteranlage ProdLinie 1	37	1257,1459	2004
	23-0034837	Filteranlage Löschturm	8	102,0000	2004
	23-0034837	Filteranlage ProdLinie 2	37	1586,3040	2004
	23-0034837	Filteranlage ProdLinie 2	37	1177,8307	2004
	23-0034837	Filteranlage ProdLinie 2	37	1177,8307	2004
	23-0034837	Filteranlage ProdLinie 2	37	2212,8941	2004
	23-0034837	Filteranlage ProdLinie 3	37	1586,3040	2004
	23-0034837	Filteranlage ProdLinie 3	37	1454,1120	2004
	23-0034837	Filteranlage ProdLinie 3	37	1454,1120	2004
	23-0034837	Filteranlage ProdLinie 3	37	2181,1680	2004
	23-0034837	Filteranlage Mehltr. und ProdLinie C	37	1249,2144	2004
	23-0034837	Filteranlage Exportabsackung	42	793,1520	2004
	23-0034837	Filteranlage Getreideannahme	8	2256,7500	2004
	23-0034837	Filteranlage 700er Zellen	37	892,2960	2004
	23-0034837	Filteranlage Pelletierung	41	3172,6080	2004
	23-0034837	Filteranlage 900er Zellen	41	1189,7280	2004
	23-0034837	Filteranlage Type 2000	37	423,0144	2004
1 . 1	23-0034837	Filteranlage Kleieannahme	37	264,3840	2004
Lebensmittelmühle 2	23-0034837	Filteranlage Chargenmischer	39	555,2064	2004
	23-0034837	Filteranlage Chargenmischer	39	555,2064	2004
	23-0034837	Filteranlage Chargenmischer	24	281,5690	2004
	23-0034837	Filteranlage Mehlsilo 2	70	1407,8448	2004
	23-0034837	Filteranlage Mehlsilo 1	40	1982,8800	2004
	23-0034837	Filteranlage Mehlsilo 1	37	396,5760	2004
	23-0034837	Filteranlage ProdLinie 2	10	166,5619	2004
	23-0034837	Filteranlage 400er Zellen	37	959,7139	2004
	23-0034837	Filteranlage Pelletverladung	37	436,2336	2004
	23-0034837	Filteranlage 500 / 600er Zellen	24	329,3784	2004
	23-0034837	Filteranlage 500 / 600er Zellen	24	555,2064	2004
	23-0034837	Filteranlage Getreidesilo 1	37	428,3021	2004
	23-0034837	Filteranlage Backprodukte	15	660,7397	2004
	23-0034837	Filteranlage Backprodukte	24	416,4048	2004
	23-0034837	Filteranlage MKTW	22	594,8640	2004
	23-0034837	Filteranlage Ladestraße 5	18	713,8368	2004
	23-0034837	Filteranlage Ladestraße 6	18	713,8368	2004
	23-0034837	Filteranlage Kleinpackung	10	1229,3856	2004
	23-0034837	Filteranlage Getreidesilo 1	28	2148,1200	2004
	23-0034837	Filteranlage Getreidesilo 1	21	991,4400	2004
	23-0034837	Filteranlage Getreidesilo 1	21	1020,0000	2004
	23-0034837	Filteranlage Getreidesilo 2	20	3834,8899	2004
	23-0034837	Filteranlage Getreidesilo 2	15	850,0000	2004
	23-0034552	Kamin (BE10)	25	4,2760	2004
Werk für Hygiene-Produkte	23-0034552	Kamin (BE20)	25	4,8704	2004
	23-0034552	Kamin (BE30)	25	4,1008	2004

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	23-0034552	Haubenabluft N 1	19,6	5,7018	2004
Mark für I kraiana Dradukta	23-0034552	Haubenabluft N 2	19,6	4,4222	2004
Werk für Hygiene-Produkte	23-0034552	Abluftrohr Staubabsaugung PM2	10	3420,0000	2004
	23-0034552	Abluftrohr Staubabsaugung PM 1	12	13500,0000	2004
	23-0035059	KAMIN	65	0,4841	2004
	23-0035059	KAMIN	65	0,0086	2004
	23-0035059	KAMIN	65	0,0169	2004
W	23-0035059	KAMIN	65	0,5458	2004
Werk für Fette und -öle	23-0035059	KAMIN	65	0,6221	2004
	23-0035059	KAMIN	65	0,2179	2004
	23-0035059	KAMIN	65	0,6027	2004
	23-0035059	KAMIN	65	0,1019	2004
	23-0253767	Abscheider Presse 1	8,2	761,6700	2004
	23-0253767	Abscheider Presse 1	8,2	0,2695	2004
	23-0253767	Schüttgosse Schiff	0	0,1607	2004
	23-0253767	Abscheider Pr2&4	8,2	761,6700	2004
	23-0253767	Absch.Pre.3	7,7	535,9900	2004
Kraftfutterw erk	23-0253767	Tuchfil.Mühle 1	25	176,7150	2004
	23-0253767	Tuchfil.Mühle 2	25	176,7150	2004
	23-0253767	Abscheid.Körnerfutter	30	128,7000	2004
	23-0253767	Tuchf.Mischerei	55	631,1250	2004
	23-0471123	Zentralentstaubung	25	79,0230	200-
	23-9003557	Abzug Kessel-1	64	21,6337	200-
Heizw erk	23-9003557	Abzug Kessel-2	64	2,4712	200-
TIOLETT OTT	23-9003557	Abzug Kessel-3	64	22,5995	200-
	23-0038219	Kamin Feuerungsanlage	60	3255,6450	200-
	23-0038219	Schiffsentladeanlage 1	4	34,8595	200-
	23-0038219	Abluft aus dem Schrottrockner	39	135,4080	200-
	23-0038219	Abluft Schrotkühler (Schrotkühler)	39	926,2911	200-
Ölmühle 1	23-0038219	Abluft MIAG-Anlage	39	473,5411	200-
Olinanie i	23-0038219	Abluft Geka-Kessel	39	2,5037	2004
	23-0038219	Schiffsentladeanlage 2	6	974,6245	
	23-0038219	Abluft Lurgi-Kessel	40		2004
	23-0038219	Abluft Silos		0,6237	2004
	23-0486396	Schiffladeöffnung	52	300,2098 97,9200	2004
Ölmühle 2	23-0486396	Filteraustritt/Schiffsentladung			2004
Oiltiutile 2	23-0486396	LKW-Ladestation	8	48,9600	2004
Datable file	23-0488390	Kamin, Zinkb, Heiz Halle 1		10,2000	2004
Betrieb für	23-0248879		25	0,0004	2004
Oberflächenbehandlung		Zinkbad-Absaugung Halle 1	22	7,3256	2004
Betrieb für Umschlag und	23-0253811	Trichter Halle 1u.2	15	40,5405	2004
Lagerung 2	23-0253811	Trichter Lkw-beladung	5	67,4573	2004
	23-0253811	LKW Beladung Halle 1	5	53,5747	2004
Papier- und Pappeherstellung	20-0052589	Schornstein der Feuerungsanlage	70	3,9585	2004
	20-0052589	Schornstein der Gast./Abhitzekessel	40	24,9386	2004
	20-0098088	HALLENOEFFNUNG W 1	5	1,1728	2004
Werk für keramische	20-0098088	HALLENOEFFNUNG W 1	5	2,2073	2004
Werkstoffe	20-0098088	KAMIN- Riedhammer 2	11	8,1991	2004
	20-0098088	KAMIN - TO 1+ Bickley 2	36	6,9336	2004
	20-0098088	KAMIN - TO 1+ Bickley 2	36	5,0380	2004

Arbeitsstätten-Name	Arbeitsstätten-Nr.	Quellbezeichnung	Quellhöhe [m]	Auswurf von PM10 [kg/a]	EE
	20-0098088	KAMIN - Riedhammer 1	10	7,2576	2004
	20-0098088	KAMIN - Blockkofen 3	9	6,0329	2004
	20-0098088	KAMIN - Blockofen 4 und 5	10	5,7506	2004
	20-0098088	KAMIN - Blockofen 4 und 5	10	1,8346	2004
Werk für keramische Werkstoffe	20-0098088	KAMIN - Riedhammer 3	10	7,4390	2004
Werkstorie	20-0098088	KAMIN - HWO	19	209,3611	2004
	20-0098088	KAMIN - Bickley 1	15	7,8397	2004
	20-0098088	KAMIN - Riedhammer 4	23	6,4512	2004
	20-0098088	Kamin - Riedhammer 5	16,5	351,8222	2004
Blockheizkraftw erk 1	20-0164317	BHKW Module 1-3	33,5	1,9180	2004
Dataiah asit Haiseka ashara sara	20-0409620	ABGASKAMIN	20	0,0073	2004
Betrieb mit Heizölverbrennung	20-0409620	ABGASKAMIN	20	0,0647	2004
Herstellung von Messgeräten	20-0525915	Maschinenabsaugung	10	19,4719	2004
D	20-0676271	Kamin 1	55	0,4766	2004
Betrieb zur Verwaltung von Grundstücken	20-0676271	Kamin 2	55	0,4846	2004
Grundstucken	20-0676271	Kamin 3	55	0,4846	2004
	23-9003151	Schmelzhalle	6	643,9356	2004
	23-9003151	Gießhalle	8	1135,8769	2004
	23-9003151	Gießhalle	8	0,1257	2004
	23-9003151	Krätzelagerhalle Halle 1	3	97,8075	2004
Mantagar Mantagar and Const	23-9003151	Krätzeanlagehalle	3	146,1099	2004
Werk für Metallrecycling	23-9003151	Schrottlagerhalle Halle 2	3	45,9270	2004
	23-9003151	Zentralkamin	50	5,1896	2004
	23-9003151	Zentralkamin	50	0,6757	2004
	23-9003151	Zentralkamin	50	9750,2784	2004
	23-9003151	Lagerplatz	0	1262,3688	2004
Betzrieb für	23-0035279	SCHORNSTEIN Kesselhaus	35	30,2622	2004
Flachdachkomponenten	23-0035279	SCHORNSTEIN Kesselhaus	35	9,5087	2004
Blockheizkraftw erk 2	20-0676435	Schornstein	25	0,5086	2004
Orto ana Basina Hafan O	20-0167281	Freifläche	2	16,8000	2004
Ortsansässige Hafen-GmbH 3	20-0167281	Kran 4 Heerdt	2	44,4500	2004
Stahlherstellung	100-0038231		10	10,0000	2004

Anhang B

Staub-Emissionen von nicht-emissionserklärungspflichtigen Betrieben

Dieser Anhang wird aus Gründen des Datenschutzes gestrichen